scholarly journals Simulation of Sesame Seeds Outflow in Oscillating Seed Metering Device Using DEM

2020 ◽  
Vol 30 (2) ◽  
pp. 219-231
Author(s):  
Noureldin N. Sharaby ◽  
Artyom A. Doroshenko ◽  
Andrey V. Butovchenko

Introduction. Sesame crop is one of the most important export crops in many countries around the world, especially in Africa. To meet the agricultural requirement of precision planting, various types of precision seed planters have been developed. Numerous studies were carried out to study the optimisation of the parameters of the precision planting. One of these parameters, affecting the quality of the precision seeder, is the grain outflow from the seed metering device. Materials and Methods. In order to maintain good continuous performance of an oscillating seeder, it is important to monitor seed flow in real-time and adjust oscillation parameters automatically. Existing research methods, such as prototyping and monitoring the process using a high-speed camera, by reason of the random movement of particles, do not allow obtaining sufficient data to understand trajectories and velocities of particles and existing equations for particle motion when simulating the sowing process do not allow taking into account the interaction of particles that having various shapes, rolling and sliding friction coefficients, and the elastic modulus of particle materials and a working body. In this study, the outflow rate of sesame seeds in an oscillating seed metering device was modeled using the simulation method based on the discrete element method. The aim of this study is to create a simulation model of an oscillating-type sowing planter using the sowing sesame seeds as an example for evaluating the effectiveness of this model, and the possibility of further optimization and prediction of sowing seeds with this device. Results. The analysis of the results showed that during the simulation, the sowing rate of sesame seeds when leaving the oscillating seed metering holes has significant differences in number and direction. The results of the modeling process in this study showed that when opening a hole in the oscillating seeder, a number of sesame seeds from 0 to 4 were coming out of it. The resulting model allows monitoring the behavior of each particle of a sesame seed, analyzing its trajectory, speed, and forces acting on it at any one time, and varying the parameters to obtain the dependence of uneven seeding on the kinematic and geometric parameters of the device. Discussion and Conclusion. The obtained simulation results provide an effective method for predicting the consumption of sesame seeds from the oscillating seed meter, which serves as the basis for optimizing the kinematic and geometric parameters of the oscillating sowing device in order to increase its efficiency. This model is universal and can be adapted to sow other crops.

2021 ◽  
pp. 179-188
Author(s):  
Yulong Chen ◽  
Meng Zhang ◽  
Zeqi Liu ◽  
Yubin Lan ◽  
Lili Yi ◽  
...  

In order to improve the seed filling performance of mechanical hole type seed metering device with high speed, a vertical disc metering device was designed with seed agitator to improve the seed filling probability. Discrete element simulation method and physical prototype bench tests were used to simulate and analyse the seed metering process. The structure parameters of the seed agitators were optimized by the quadratic orthogonal rotation central composite design test. The results showed that: 1) the addition of seed agitator had a significant influence on the MIS (miss index), among which the concave type had the lowest MIS, and it was the highest without agitator; 2) for concave type agitator, the optimal value of depth and angle were 3.1 mm and 60.5°, respectively; 3) the physical prototype tests showed that the QFI (quality of feed index) was more than 95% under the speed of 2-10 km/h, and the MIS was less than 1%, which meets the requirements of precision sowing.


2021 ◽  
pp. 73-81
Author(s):  
Bing Xu ◽  
Decong Zheng ◽  
Jiaxin Wang ◽  
Youzhi Yang

In order to improve the seed filling performance of mechanical hole type seed metering device with high speed, a vertical disc metering device was designed with seed agitator to improve the seed filling probability. Discrete element simulation method and physical prototype bench tests were used to simulate and analyse the seed metering process. The structure parameters of the seed agitators were optimized by the quadratic orthogonal rotation central composite design test. The results showed that: 1) the addition of seed agitator had a significant influence on the MIS (miss index), among which the concave type had the lowest MIS, and it was the highest without agitator; 2) for concave type agitator, the optimal value of depth and angle were 3.1 mm and 60.5°, respectively; 3) the physical prototype tests showed that the QFI (quality of feed index) was more than 95% under the speed of 2-10 km/h, and the MIS was less than 1%, which meets the requirements of precision sowing.


2017 ◽  
Vol 28 (10) ◽  
pp. 1750126 ◽  
Author(s):  
Yutong Liu ◽  
Chengxuan Cao ◽  
Yaling Zhou ◽  
Ziyan Feng

In this paper, an improved real-time control model based on the discrete-time method is constructed to control and simulate the movement of high-speed trains on large-scale rail network. The constraints of acceleration and deceleration are introduced in this model, and a more reasonable definition of the minimal headway is also presented. Considering the complicated rail traffic environment in practice, we propose a set of sound operational strategies to excellently control traffic flow on rail network under various conditions. Several simulation experiments with different parameter combinations are conducted to verify the effectiveness of the control simulation method. The experimental results are similar to realistic environment and some characteristics of rail traffic flow are also investigated, especially the impact of stochastic disturbances and the minimal headway on the rail traffic flow on large-scale rail network, which can better assist dispatchers in analysis and decision-making. Meanwhile, experimental results also demonstrate that the proposed control simulation method can be in real-time control of traffic flow for high-speed trains not only on the simple rail line, but also on the complicated large-scale network such as China’s high-speed rail network and serve as a tool of simulating the traffic flow on large-scale rail network to study the characteristics of rail traffic flow.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110180
Author(s):  
Ruzhong Yan ◽  
Haojie Zhang

This study adopts the DMT(dynamic mesh technology) and UDF(user defined functions) co-simulation method to study the dynamic characteristics of aerostatic thrust bearings with equalizing grooves and compare with the bearing without equalizing groove under high speed or ultra high speed for the first time. The effects of air film thicness, supply pressure, rotation speed, perturbation amplitude, perturbation frequency, and cross section of the groove on performance characteristics of aerostatic thrust bearing are thoroughly investigated. The results show that the dynamic stiffiness and damping coefficient of the bearing with triangular or trapezoidal groove have obvious advantages by comparing with that of the bearing without groove or with rectangular groove for the most range of air film thickness, supply pressure, rotation speed, perturbation amplitude, especially in the case of high frequency, which may be due to the superposition of secondary throttling effect and air compressible effect. While the growth range of dynamic stiffness decreases in the case of high or ultra-high rotation speed, which may be because the Bernoulli effect started to appear. The perturbation amplitude only has little influence on the dynamic characteristic when it is small, but with the increase of perturbation amplitude, the influence becomes more obvious and complex, especially for downsized aerostatic bearing.


Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 44
Author(s):  
Yi Ge ◽  
Zhenbo Tong ◽  
Renjie Li ◽  
Fen Huang ◽  
Jiaqi Yu

Respimat®Soft MistTM is a newly developed spray inhaler. Different from traditional nebulizers, metered-dose inhalers, and dry powder inhalers, this new type of inhaler can produce aerosols with long duration, relatively slow speed, and a high content of fine particles. Investigating the effect of the key geometric parameters of the device on the atomization is of great significance for generic product development and inhaler optimization. In this paper, a laser high-speed camera experimental platform is built, and important parameters such as the geometric pattern and particle size distribution of the Respimat®Soft MistTM are measured. Computational fluid dynamics (CFD) and the volume of fluid method coupled with the Shear Stress Transport (SST) k-ω turbulence model are applied to simulate the key geometric parameters of the device. The effects of geometric parameters on the spray velocity distribution and geometric pattern are obtained. The angle of flow collision, the sphere size of the central divider and the length and width of the flow channel show significant impacts on the spray atomization.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Gang Yu ◽  
Dong Li ◽  
Yue Shu ◽  
Zeyu Zhang

The engine/airframe interaction effects of the BWB300 on aerodynamic performances were analyzed by using the numerical simulation method. The BWB300 is a 300-seat Blended Wing Body airplane designed by the Airplane Concept Design Institute of Northwestern Polytechnical University. The engine model used for simulation was simplified as a powered nacelle. The results indicated the following: at high speed, although the engine/airframe interaction effects on the aerodynamic forces were not significant, the airframe’s upper surface flow was greatly changed; at low speed, the airframe’s aerodynamic forces (of the airplane with/without the engine) were greatly different, especially at high attack angles, i.e., the effect of the engine suction caused the engine configuration aerodynamic forces of the airframe to be bigger than those without the engine; and the engine’s installation resulting in the different development of flow separation at the airframe’s upper surface caused greater obvious differences between the 2 configurations at high angles and low speed. Moreover, at low-speed high attack angles, the separated flow from the blended area caused serious distortion at the fan inlet of the engine.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Yiran Wang ◽  
Yimin Gao ◽  
Jun Takahashi ◽  
Yi Wan ◽  
Yunqian Zhang ◽  
...  

Abstract The rapid development of high-speed railways necessitates the development of new materials for switch slide baseplates. In this study, a Cu–Ni–graphite composite, containing 1 wt% to 6 wt% graphite and prepared by powder metallurgy, was used as a potential material. Pin-on-disk wear tests were conducted to measure the sliding friction of the Cu–Ni–graphite composite against U75 V steel. The results showed that the friction coefficients gradually decreased when the graphite content in the composite ranged from 1 wt% to 4 wt% in the composite. When the graphite content was 4 wt%, the friction coefficient reached the minimum value (0.153). When the graphite content was low (1 wt% to 4 wt%), the primary wear mechanism was microcutting. An increased graphite content facilitated the generation of lubricating films and decreased the wear damage. As the graphite content increased from 4 wt% to 6 wt%, the friction coefficients also increased. The variation in the wear volume rate had the same tendency as the friction coefficient. When the graphite content exceeded 4 wt%, the primary wear mechanism was delamination and fatigue wear. Due to the tendency to form cracks on the subsurface and the plentiful generation of the spalled pits, the graphite fragments could not completely form lubricating films but separated as wear debris. The lubricating films existing on the U75 V steel were in proportion to the graphite content in the composite. The wear weight loss of the U75 V steel exhibited a reduction with increasing graphite content.


Author(s):  
Takayuki Suzuki ◽  
Hiroyuki Yoshida ◽  
Fumihisa Nagase ◽  
Yutaka Abe ◽  
Akiko Kaneko

In order to improve the safety of Boiling Water Reactor (BWR), it is required to know the behavior of the plant when an accident occurred as can be seen at Fukushima Daiichi nuclear power plant accident. Especially, it is important to estimate the behavior of molten core jet in the lower part of the reactor pressure vessel at a severe accident. In the BWR lower plenum, the flow characteristics of molten core jet are affected by many complicated structures, such as control rod guide tubes, instrument guide tubes and core support plate. However, it is difficult to evaluate these effects on molten core jet experimentally. Therefore, we considered that multi-phase computational fluid dynamics approach is the best way to estimate the effects on molten core jet by complicated structure. The objective of this study is to develop the evaluation method for the flow characteristic of molten core jet including the effects of the complicated structures in the lower plenum. So we are developing a simulation method to estimate the behavior of molten core jet falling down through the core support plate to the lower plenum of the BWR. The simulation method is based on interface tracking method code TPFIT (Two Phase Flow simulation code with Interface Tracking). To verify and validate the applicability of the developed method in detail, it is necessary to obtain the experimental data that can be compared with detailed numerical results by the TPFIT. Thus, the authors are carrying out experimental works by use of multi-phase flow visualization technique. In the experiments, time series of interface shapes are observed by high speed camera and velocity profiles in/out of the jet are measured by the PIV method. In this paper, we carried out analysis of the multi-channel experiment using the analytical method based on the TPFIT. Specifically, predicted results including interface shape and velocity profile in and out simulated molten material were compared with measured results. In the results, predicted results agreed with measured results qualitatively.


Sign in / Sign up

Export Citation Format

Share Document