scholarly journals NEW CLASS OF LUBRICANTS FOR GREEN TRIBOLOGY

2018 ◽  
Vol 1 (1) ◽  
pp. 9-15
Author(s):  
І. Mandzyuk ◽  
К. Prysiazhna

The possibility of obtaining a new class of lubricating oil bodies (PET-acylglycerol) with the help of modification of the natural fat molecule by a fragment of a link of a synthetic polymer-polyethylene terephthalate is considered. The distribution of electrostatic charge in molecules of beef fat and synthesized PET-acylglycerol is shown. A relationship between the structural hierarchy of the synthesized lubricating oil bodies and the tribotechnical indexes has been established.

Author(s):  
D.T. Grubb

Diffraction studies in polymeric and other beam sensitive materials may bring to mind the many experiments where diffracted intensity has been used as a measure of the electron dose required to destroy fine structure in the TEM. But this paper is concerned with a range of cases where the diffraction pattern itself contains the important information.In the first case, electron diffraction from paraffins, degraded polyethylene and polyethylene single crystals, all the samples are highly ordered, and their crystallographic structure is well known. The diffraction patterns fade on irradiation and may also change considerably in a-spacing, increasing the unit cell volume on irradiation. The effect is large and continuous far C94H190 paraffin and for PE, while for shorter chains to C 28H58 the change is less, levelling off at high dose, Fig.l. It is also found that the change in a-spacing increases at higher dose rates and at higher irradiation temperatures.


Author(s):  
Frances M. Ross ◽  
Peter C. Searson

Porous semiconductors represent a relatively new class of materials formed by the selective etching of a single or polycrystalline substrate. Although porous silicon has received considerable attention due to its novel optical properties1, porous layers can be formed in other semiconductors such as GaAs and GaP. These materials are characterised by very high surface area and by electrical, optical and chemical properties that may differ considerably from bulk. The properties depend on the pore morphology, which can be controlled by adjusting the processing conditions and the dopant concentration. A number of novel structures can be fabricated using selective etching. For example, self-supporting membranes can be made by growing pores through a wafer, films with modulated pore structure can be fabricated by varying the applied potential during growth, composite structures can be prepared by depositing a second phase into the pores and silicon-on-insulator structures can be formed by oxidising a buried porous layer. In all these applications the ability to grow nanostructures controllably is critical.


Author(s):  
G. C. Ruben ◽  
K. Iqbal ◽  
I. Grundke-Iqbal ◽  
H. Wisniewski ◽  
T. L. Ciardelli ◽  
...  

In neurons, the microtubule associated protein, tau, is found in the axons. Tau stabilizes the microtubules required for neurotransmitter transport to the axonal terminal. Since tau has been found in both Alzheimer neurofibrillary tangles (NFT) and in paired helical filaments (PHF), the study of tau's normal structure had to preceed TEM studies of NFT and PHF. The structure of tau was first studied by ultracentrifugation. This work suggested that it was a rod shaped molecule with an axial ratio of 20:1. More recently, paraciystals of phosphorylated and nonphosphoiylated tau have been reported. Phosphorylated tau was 90-95 nm in length and 3-6 nm in diameter where as nonphosphorylated tau was 69-75 nm in length. A shorter length of 30 nm was reported for undamaged tau indicating that it is an extremely flexible molecule. Tau was also studied in relation to microtubules, and its length was found to be 56.1±14.1 nm.


Author(s):  
Michel Fialin ◽  
Guy Rémond

Oxygen-bearing minerals are generally strong insulators (e.g. silicates), or if not (e.g. transition metal oxides), they are included within a rock matrix which electrically isolates them from the sample holder contacts. In this respect, a thin carbon layer (150 Å in our laboratory) is evaporated on the sections in order to restore the conductivity. For silicates, overestimated oxygen concentrations are usually noted when transition metal oxides are used as standards. These trends corroborate the results of Bastin and Heijligers on MgO, Al2O3 and SiO2. According to our experiments, these errors are independent of the accelerating voltage used (fig.l).Owing to the low density of preexisting defects within the Al2O3 single-crystal, no significant charge buildup occurs under irradiation at low accelerating voltage (< 10keV). As a consequence, neither beam instabilities, due to electrical discharges within the excited volume, nor losses of energy for beam electrons before striking the sample, due to the presence of the electrostatic charge-induced potential, are noted : measurements from both coated and uncoated samples give comparable results which demonstrates that the carbon coating is not the cause of the observed errors.


Author(s):  
T. F. Kelly ◽  
P. J. Lee ◽  
E. E. Hellstrom ◽  
D. C. Larbalestier

Recently there has been much excitement over a new class of high Tc (>30 K) ceramic superconductors of the form A1-xBxCuO4-x, where A is a rare earth and B is from Group II. Unfortunately these materials have only been able to support small transport current densities 1-10 A/cm2. It is very desirable to increase these values by 2 to 3 orders of magnitude for useful high field applications. The reason for these small transport currents is as yet unknown. Evidence has, however, been presented for superconducting clusters on a 50-100 nm scale and on a 1-3 μm scale. We therefore planned a detailed TEM and STEM microanalysis study in order to see whether any evidence for the clusters could be seen.A La1.8Sr0.2Cu04 pellet was cut into 1 mm thick slices from which 3 mm discs were cut. The discs were subsequently mechanically ground to 100 μm total thickness and dimpled to 20 μm thickness at the center.


Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


Author(s):  
Dean A. Handley ◽  
Lanping A. Sung ◽  
Shu Chien

RBC agglutination by lectins represents an interactive balance between the attractive (bridging) force due to lectin binding on cell surfaces and disaggregating forces, such as membrane stiffness and electrostatic charge repulsion (1). During agglutination, critical geometric parameters of cell contour and intercellular distance reflect the magnitude of these interactive forces and the size of the bridging macromolecule (2). Valid ultrastructural measurements of these geometric parameters from agglutinated RBC's require preservation with minimal cell distortion. As chemical fixation may adversely influence RBC geometric properties (3), we used chemical fixation and cryofixation (rapid freezing followed by freeze-substitution) as a comparative approach to examine these parameters from RBC agglutinated with Ulex I lectin.


2020 ◽  
Vol 7 (3) ◽  
pp. 786-794 ◽  
Author(s):  
Jingqi Han ◽  
Kin-Man Tang ◽  
Shun-Cheung Cheng ◽  
Chi-On Ng ◽  
Yuen-Kiu Chun ◽  
...  

A new class of luminescent cyclometalated Ir(iii) complexes with readily tunable mechanochromic properties derived from the mechanically induced trans-to-cis isomerization have been developed.


2020 ◽  
Vol 11 (24) ◽  
pp. 3940-3950 ◽  
Author(s):  
Patrick Verkoyen ◽  
Holger Frey

Amino-functional polyethers have emerged as a new class of “smart”, i.e. pH- and thermoresponsive materials. This review article summarizes the synthesis and applications of these materials, obtained from ring-opening of suitable epoxide monomers.


Sign in / Sign up

Export Citation Format

Share Document