scholarly journals RECYCLING OF MINERAL SERPENTINITE WASTE FROM MINING INDUSTRY AND ITS USE IN AGRICULTURE TO IMPROVE SOIL AGROCHEMICAL PROPERTIES

Author(s):  
Juozas PEKARSKAS ◽  
Algirdas GAVENAUSKAS ◽  
Anželika DAUTARTĖ ◽  
Aida STIKLIENĖ

The influence of processing the serpentinite quarry from the Caucasian mountains at the foot of the Mount Elbrus crushed waste on soil agrochemical properties, phytotoxicity of spring barley, influence on barley plant biomass and its chemical composition were investigated. Ground and granular serpentinite had a different effect on soil and plants. Application of serpentinite fertilizers significantly increased the content of calcium, iron, 227.95-376.75 and 5.05-9.62 mg kg-1, total and plant-derived magnesium 0.34-0.52 and 1.19-2.16 mg kg-1, lead and nickel, while the amount of copper dropped substantially; the soil was becoming more alkaline. Application of ground serpentinite lead to alkalizing of the soil much more compared to the granular, with a significant increase in plant-derived magnesium. The influence of serpentinite increased the yield of spring barley plants in green and dry mass by 0.049-0.256 and 0.011-0.046 g or 0.65-3.41 and 1.19-2.59% out of the growing vessel, and dry matter increased by 0.12-0.26 % units, the yield of spring barley green and dry mass under the influence of ground serpentinite was higher than of granular serpentinite fertilizer, and the dry matter was found to be significantly higher than that of unfertilized spring barley plants. Ground and granular serpentinite was not phytotoxic to spring barley. An application of ground serpentinite increased an amount of calcium, potassium and magnesium in the barley dry matter compared to the granular serpentinite. Ground and granular serpentinite reduced the amount of trace elements copper and manganese in the dry mass of the plant, and the amount of zinc decreased only after fertilization with granular serpentinite. An application of serpentinite significantly decreased content of lead, chrome and cadmium while nickel content significantly increased in the dry matter of barley plants.


2013 ◽  
Vol 27 (1) ◽  
pp. 89-95 ◽  
Author(s):  
T. Zając ◽  
A. Oleksy ◽  
A. Stokłosa ◽  
A. Klimek-Kopyra ◽  
J. Macuda

Abstract The study aimed at evaluating the distribution of mass in the straw of cereal species and also at assessing the straw yield and its losses resulting from the amount of the stubble left in the field. It was found empirically that the wheat culms are composed of five internodes, and in barley, triticale and oats of six. The highest straw mass per 1 cm was found in the second internode in both forms of wheat and winter triticale, whereas barley and oats gathered the highest weight in the first internode. In the southern part of Silesia species and forms of cereals differed in the straw yield, which can be arranged as follows, from the highest: winter wheat > spring wheat, winter triticale, winter barley, and oats > spring barley. Due to the specific distribution of dry matter in each of internodes of both wheat forms - winter and spring, they loose less stubble mass (22 and 24%, respectively), comparing to other cereals, especially spring barley, which loose 31% yield of straw in the stubble of 15 cm height.



Author(s):  
O. А. Artyukhova ◽  
O. V. Gladysheva ◽  
V. А. Svirina

The article presents the results of a study of the effect of applying doses of mineral fertilizers (N0P0K0, N30P30K30, N60P60K60, N90P90K90) when cultivating varieties of spring barley (Vladimir, Reliable, Yaromir) on the formation of the area of leaf plates, the growth of green biomass and the accumulation of dry matter by crop plants in different years of moisture in the South of the Central non-Chernozem region. It was found that the use of mineral fertilizers in doses N60P60K60, N90P90K90 contributed to the greatest increase in the area of the assimilation apparatus and the growth of plant biomass. In the phase of entering the tube, the leaf area on the above backgrounds exceeded the control variants by an average of 49,6 and 63,3 % (Vladimir variety), 62,3 and 45,4 % (Reliable variety), and 44,6 and 53,2 % (Yaromir variety). The average growth of biomass in 2017-2019 with the use of N60P60K60, N90P90K90 increased compared to the control variants by 83,3 and 182,7 % (Vladimir variety), by 68,9 and 88,3 % (Reliable variety) and by 82,0 and 107,5 % (Yaromir variety) in the beginning of earing phase with further growth of this indicator to the phase of milk ripeness of plants. The percentage of dry matter in plants depended not only on the doses of mineral fertilizers, but also on weather conditions, namely, on the value of the Selyaninov hydrothermal moisture coefficient (SCC). With an increase in the applied rates of fertilizers, at values of GTC in the range of 0,37 – 0,44, dry matter is accumulated by plants, at values from 0,64 to 1,2, due to the provided moisture and greater water consumption by spring barley varieties, the percentage of dry matter content decreased. Yield – the final indicator of all conditions. Reliable and Yaromir varieties showed the greatest stability in obtaining a good harvest, which exceeded the values of control variants on average for 2017-2019 by 89,1 and 79,0 % on backgrounds N60P60K60 and N90P90K90 respectively. Correlations were determined for all the studied indicators.



2009 ◽  
Vol 57 (2) ◽  
pp. 119-125
Author(s):  
G. Hadi

The dry matter and moisture contents of the aboveground vegetative organs and kernels of four maize hybrids were studied in Martonvásár at five harvest dates, with four replications per hybrid. The dry matter yield per hectare of the kernels and other plant organs were investigated in order to obtain data on the optimum date of harvest for the purposes of biogas and silage production.It was found that the dry mass of the aboveground vegetative organs, both individually and in total, did not increase after silking. During the last third of the ripening period, however, a significant reduction in the dry matter content was sometimes observed as a function of the length of the vegetation period. The data suggest that, with the exception of extreme weather conditions or an extremely long vegetation period, the maximum dry matter yield could be expected to range from 22–42%, depending on the vegetation period of the variety. The harvest date should be chosen to give a kernel moisture content of above 35% for biogas production and below 35% for silage production. In this phenophase most varieties mature when the stalks are still green, so it is unlikely that transport costs can be reduced by waiting for the vegetative mass to dry.



HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 485b-485
Author(s):  
Lisa M. Barry ◽  
Michael N. Dana

Nurse crops are often recommended in prairie restoration planting. This work investigated several alternative nurse crops to determine their utility in prairie planting. Nurse crops were composed of increasing densities (900, 1800, or 2700 seeds/m2) of partridge pea, spring oats, spring barley, Canada wild rye, or equal mixtures of partridge pea and one of the grasses. The experimental design was a randomized complete-block set in two sites with three blocks per site and 48 treatments per block. Each 3 × 3-m plot contained 1 m2 planted in Dec. 1995 or Mar. 1996 with an equal mix of seven prairie species. The nurse crops were sown over each nine square meter area in April 1996. Plots lacking nurse crops served as controls. Evaluated data consisted of weed pressure rankings and weed and prairie plant dry weight. Nurse crop treatments had a significant effect on weed pressure in both sites. Barley (1800 and 2700 seeds/m2) as well as partridge pea + barley (2700 seeds/m2) were most effective at reducing weed pressure. When weed and prairie plant biomass values were compared, a significant difference was observed for site quality and planting season. Prairie plant establishment was significantly greater in the poorly drained, less-fertile site and spring-sown plots in both sites had significantly higher prairie biomass values. Overall, after two seasons, there was no advantage in using nurse crops over the control. Among nurse crop treatments, oats were most effective in reducing weed competition and enhancing prairie plant growth.



HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 523c-523
Author(s):  
Siegfried Zerche

Refined nutrient delivery systems are important for environmentally friendly production of cut flowers in both soil and hydroponic culture. They have to be closely orientated at the actual nutrient demand. To solve current problems, express analysis and nutrient uptake models have been developed in horticulture. However, the necessity of relatively laborious analysis or estimation of model input parameters have prevented their commercial use up to now. For this reason, we studied relationships between easily determinable parameters of plant biomass structure as shoot height, plant density and dry matter production as well as amount of nitrogen removal of hydroponically grown year-round cut chrysanthemums. In four experiments (planting dates 5.11.91; 25.3.92; 4.1.93; 1.7.93) with cultivar `Puma white' and a fixed plant density of 64 m2, shoots were harvested every 14 days from planting until flowering, with dry matter, internal N concentration and shoot height being measured. For each planting date, N uptake (y) was closely (r2 = 0.94; 0.93; 0.84; 0.93, respectively) related to shoot height (x) at the time of cutting and could be characterized by the equation y = a * × b. In the soilless cultivation system, dry matter concentrations of N remained constant over the whole growing period, indicating non-limiting nitrogen supply. In agreement with constant internal N concentrations, N uptake was linearly related (r2 = 0.94 to 0.99) to dry matter accumulation. It is concluded that shoot height is a useful parameter to include in a simple model of N uptake. However, in consideration of fluctuating greenhouse climate conditions needs more sophisticated approaches including processes such as water uptake and photosynthetically active radiation.



Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Judit Barroso ◽  
Nicholas G. Genna

Russian thistle (Salsola tragus L.) is a persistent post-harvest issue in the Pacific Northwest (PNW). Farmers need more integrated management strategies to control it. Russian thistle emergence, mortality, plant biomass, seed production, and crop yield were evaluated in spring wheat and spring barley planted in 18- or 36-cm row spacing and seeded at 73 or 140 kg ha−1 in Pendleton and Moro, Oregon, during 2018 and 2019. Russian thistle emergence was lower and mortality was higher in spring barley than in spring wheat. However, little to no effect of row spacing or seeding rate was observed on Russian thistle emergence or mortality. Russian thistle seed production and plant biomass followed crop productivity; higher crop yield produced higher Russian thistle biomass and seed production and lower crop yield produced lower weed biomass and seed production. Crop yield with Russian thistle pressure was improved in 2018 with 18-cm rows or by seeding at 140 kg ha−1 while no effect was observed in 2019. Increasing seeding rates or planting spring crops in narrow rows may be effective at increasing yield in low rainfall years of the PNW, such as in 2018. No effect may be observed in years with higher rainfall than normal, such as in 2019.



Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 451
Author(s):  
Moritz von Cossel ◽  
Lorena Agra Pereira ◽  
Iris Lewandowski

The global demand for plant biomass to provide bioenergy and heat is continuously increasing because of a growing interest among many industrialized and developing countries towards climate sound and renewable energy supply. The exacerbation of land-use conflicts proliferates social-ecological demands on future bioenergy cropping systems. Perennial herbaceous wild plant mixtures (WPMs) represent an approach to providing social-ecologically more sustainably produced biogas substrate that has gained increasing public and political interest only in recent years. The focus of this study lies on three perennial wild plant species (WPS) that usually dominate the biomass yield performance of WPM cultivation. These WPS were compared with established biogas crops in terms of their substrate-specific methane yield (SMY) and lignocellulosic composition. The plant samples were investigated in a small-scale mesophilic discontinuous biogas batch test for determining the SMY. All WPS were found to have significantly lower SMY (241.5–248.5 lN kgVS−1) than maize (337.5 lN kgVS−1). This was attributed to higher contents of lignin (9.7–12.8% of dry matter) as well as lower contents of hemicellulose (9.9–11.5% of dry matter) in the WPS. Only minor, non-significant differences to cup plant and Virginia mallow were observed. Thus, when planning WPS as a diversification measure in biogas cropping systems, their lower SMY should be considered.



1999 ◽  
Vol 26 (8) ◽  
pp. 737 ◽  
Author(s):  
Marcus Schortemeyer ◽  
Owen K. Atkin ◽  
Nola McFarlane ◽  
John R. Evans

The interactive effects of nitrate supply and atmospheric CO2 concentration on growth, N2 fixation, dry matter and nitrogen partitioning in the leguminous tree Acacia melanoxylon R.Br. were studied. Seedlings were grown hydroponically in controlled-environment cabinets for 5 weeks at seven 15N-labelled nitrate levels, ranging from 3 to 6400 mmol m–3. Plants were exposed to ambient (~350 µmol mol–1) or elevated (~700 µmol mol–1) atmospheric CO2 for 6 weeks. Total plant dry mass increased strongly with nitrate supply. The proportion of nitrogen derived from air decreased with increasing nitrate supply. Plants grown under either ambient or elevated CO2 fixed the same amount of nitrogen per unit nodule dry mass (16.6 mmol N per g nodule dry mass) regardless of the nitrogen treatment. CO2 concentration had no effect on the relative contribution of N2 fixation to the nitrogen yield of plants. Plants grown with ≥50 mmol m–3 N and elevated CO2 had approximately twice the dry mass of those grown with ambient CO2 after 42 days. The rates of net CO2 assimilation under growth conditions were higher per unit leaf area for plants grown under elevated CO2. Elevated CO2 also decreased specific foliage area, due to an increase in foliage thickness and density. Dry matter partitioning between plant organs was affected by ontogeny and nitrogen status of the plants, but not by CO2 concentration. In contrast, plants grown under elevated CO2 partitioned more of their nitrogen to roots. This could be attributed to reduced nitrogen concentrations in foliage grown under elevated CO2.



1995 ◽  
Vol 74 (5) ◽  
pp. 717-722 ◽  
Author(s):  
Erling S. Nordøy

Mammals are known to utilize wax esters with an efficiency of less than 50%. The purpose of the present study was to examine whether or not minke whales (Balaenoptera acutorostrata), which at times may eat considerable amounts of wax-ester-rich krill, represent an exception to this general pattern. Samples of fresh undigested forestomach, as well as colon, contents were obtained from minke whales (n5) that had been feeding on krill (Thysanoessa inermis) for some time. The samples were analysed for dry mass, energy density, lipid content and the major lipid classes, including wax esters. The concentrations of wax esters were compared with previous estimates of dry-matter disappearance of the same type of prey using anin vitrotechnique, to calculate the dry-matter digestibility of wax esters (DMDwax). Wax esters contributed 21% of the energy and 47% of total lipids in the krill diet. The energy density of gut contents decreased by 50% after their passage from forestomach to the end of the colon. The DMDwaxwas 94·1 (SD 2·8)% (n5). This high DMDwaxand the occurrence of fatty alcohols, one of the products of wax-ester hydrolysis, in faeces show that minke whales are very efficient digesters of wax esters and absorb most of the energy-rich products of this process.



2017 ◽  
Vol 9 (11) ◽  
pp. 283 ◽  
Author(s):  
Renata V. Menezes ◽  
André D. Azevedo Neto ◽  
Hans R. Gheyi ◽  
Alide M. W. Cova ◽  
Hewsley H. B. Silva

Basil (Ocimum basilicum L.) is a medicinal species of Lamiaceae family, popularly known for its multiple benefits and high levels of volatile compounds. The species is considered to be one of the most essential oil producing plants. Also cultivated in Brazil as a condiment plant in home gardens. The objective of this study was to evaluate the effect of salinity on the growth of basil in nutrient solution of Furlani and to identify variables related to the salinity tolerance in this species. The first assay was performed with variation of five saline levels (0 - control, 20, 40, 60 and 80 mM NaCl). In the second assay six genotypes were evaluated in two salinity levels 0 and 80 mM NaCl. The height, stem diameter, number of leaves, dry mass and inorganic solutes in different organs, photosynthetic pigments, absolute membrane integrity and relative water content were evaluated. All biometric variables in basil were significantly reduced by salinity. Dry matter yield and percentage of membrane integrity were the variables that best discriminated the characteristics of salinity tolerance among the studied basil genotypes. Basil genotypes showed a differentiated tolerance among the genotypes, the ‘Toscano folha de alface’ being considered as the most tolerant and ‘Gennaro de menta’ as the most sensitive, among the species studied.



Sign in / Sign up

Export Citation Format

Share Document