Roadside Vegetation in and Around the Megacity of Kolkata Along an Urbanisation Gradient

2021 ◽  
Vol 63 (1-2) ◽  
pp. 77-86
Author(s):  
N. C. Karmakar ◽  
J. Ballav ◽  
A. Hazra

Combustion of fossil fuels by the on-road vehicles is major contributor of air pollution which affects the surrounding vegetation and their habitat in addition to human health hazards. Study on the concurrence between vehicular greenhouse gas emissions and associated plant community is important to assess the present day problem scenario on environmental equilibrium. An ecological analysis has been carried out from five locations along roadside of the suburban interiors to the highly vehicle congested urban areas of Kolkata megacity. Quantitative study on naturally grown road side vegetation covering seedlings of tree and shrubby species, herbaceous annuals and perennials along the suitable length of each study area was conducted following standard methodology. Increasing vehicular pollution shows reciprocal correlation with species richness and species diversity. From community structure analyses across the emission gradient it was revealed that a few species exhibited tolerance to withstand increasing air contamination by successful population growth. Nevertheless, the present study might be worthwhile in assessing ecological status of the local plant communities subjected to varying level of vehicle traffic.

Author(s):  
Anita Rønne

Increasing focus on sustainable societies and ‘smart cities’ due to emphasis on mitigation of climate change is simultaneous with ‘smart regulation’ reaching the forefront of the political agenda. Consequently, the energy sector and its regulation are undergoing significant innovation and change. Energy innovations include transition from fossil fuels to more renewable energy sources and application of new computer technology, interactively matching production with consumer demand. Smart cities are growing and projects are being initiated for development of urban areas and energy systems. Analysis from ‘Smart Cities Accelerator’, developed under the EU Interreg funding programme that includes Climate-KIC,——provides background for the focus on a smart energy system. Analysis ensures the energy supply systems support the integration of renewables with the need for new technologies and investments. ‘Smart’ is trendy, but when becoming ‘smart’ leads to motivation that is an important step towards mitigating climate change.


2020 ◽  
Vol 4 (1) ◽  
pp. 9
Author(s):  
Martina Habulan ◽  
Bojan Đurin ◽  
Anita Ptiček Siročić ◽  
Nikola Sakač

Particulate matter (PM) comprises a mixture of chemical compounds and water particles found in the air. The size of suspended particles is directly related to the negative impact on human health and the environment. In this paper, we present an analysis of the PM pollution in urban areas of Croatia. Data on PM10 and PM2.5 concentrations were measured with nine instruments at seven stationary measuring units located in three continental cities, namely Zagreb (the capital), Slavonski Brod, and Osijek, and two cities on the Adriatic coast, namely Rijeka and Dubrovnik. We analyzed an hourly course of PM2.5 and PM10 concentrations and average seasonal PM2.5 and PM10 concentrations from 2017 to 2019. At most measuring stations, maximum concentrations were recorded during autumn and winter, which can be explained by the intensive use of fossil fuels and traffic. Increases in PM concentrations during the summer months at measuring stations in Rijeka and Dubrovnik may be associated with the intensive arrival of tourists by air during the tourist season, and lower PM concentrations during the winter periods may be caused by a milder climate consequently resulting in lower consumption of fossil fuels and use of electric energy for heating.


2021 ◽  
Vol 9 (1) ◽  
pp. 31-44
Author(s):  
Masoud Hatamimanesh ◽  
◽  
Samar Mortazavi ◽  
Eisa Solgi ◽  
Ahmad Mohtadi ◽  
...  

Background: In the present study, the tolerance of plantain tree species (Platanus orientalis, Morus nigra and Ailanthus altissima) to air pollution was evaluated using Air Pollution Tolerance Index (ATPI) and Anticipated Performance Index (API) index in Isfahan city (Iran). Methods: For this purpose, three dominant trees growing at six stations in Isfahan was selected and then sampling of the tree leaves was performed, after being transferred to the laboratory, the ATPI and API index were calculated. Results: The results of calculating the ATPI in the leaves of M. nigra, P. orientalis and A. altissima species showed that the highest values of ATPI index was obtained in M. nigra at 20.77 and then detected in P. orientalis and A. altissima with the values 14.90 and 14.33 respectively. According to API values Morus nigra had the best performance (Score = 6 so it classified as the Excellent) while P. orientalis and A. altissima had very good and intermediate performance, respectively. Conclusion: According to ATPI and API index most tolerant tree species was Morus nigra, so it would be the most suitable species for plantation programme in urban and pollutant areas followed by Platanus orientalis and Ailanthus altissima. As well as our results suggest that Platanus orientalis and Ailanthus altissima can be used as bio-indicators of air pollution due to their low ATPI scores (lower than 16). The present study suggests that the combination of both the ATPI and API indices for identifying and selection of plant species is very useful for plantation in urban areas.


1973 ◽  
Vol 13 (1) ◽  
pp. 125
Author(s):  
Hanns F. Hartmann

The gases comprising the atmosphere are in dynamic balance both with the oceans and the dry land of the continents. The mechanisms which operate to keep the atmospheric content of oxygen, nitrogen, carbon and sulphur constant are now well defined. The capacity of the system to absorb excess gaseous impurities is adequate on a global basis with the exception of carbon dioxide.Air pollution is thus a local problem resulting from the overloading of a particular air space with contaminants. The greater part of air pollution is due to the combustion of fossil fuels. Ease of control and virtual freedom from sulphur give natural gas an advantage over liquid and solid fuels as far as air pollution control is concerned. Oxides of nitrogen are produced when natural gas is burned but in smaller quantities than in the combustion of other fuels. In high capacity industrial gas burners where oxides of nitrogen may be generated in large quantities control is easier and can achieve a lower level of oxides of nitrogen than is the case with other fuels.The large scale use of natural gas to solve the air pollution problems of Pittsburgh, Los Angeles and many other cities is proof of the usefulness of gas in this respect. Specialised applications include use in incinerators and industrial after burners. Advances in removal of impurities from fuels and of air pollutants from products of combustion combined with rising gas prices will in time displace gas from its preeminent position in air pollution control. It is, however, likely to retain its advantage in small installations and in dense urban areas. In public and private transport its use will probably remain limited.While technological developments in the distant future may eventually displace fossil fuels, gas will have a large share of the fuel market until that day comes and will contribute effectively to the control of air pollution.


1998 ◽  
Vol 10 (2) ◽  
pp. 81-87
Author(s):  
Kenji Hayashi ◽  
Jianqun Gao

Carbon dioxide (CO2) emission derived from economic activities results primarily from the fossil fuels consumed. The variety of fossil fuels used, the degree of efficient consumption of energy, economic growth and national population size determine the total amount of CO2 emission in a country. Considering its population size as well as its potential for economic development, China is expected to play a key role in the global warming issue in concert with other industrialized Asian countries, including Japan. In the present study, the impact of population increase on total CO2 emission in China during the period 1982-1990 was analyzed. During the study period, population increase and CO2 emission per capita were 21 per cent and 70 per cent, respectively. In terms of population increase by region, some provinces in the inland areas and megacities, like Shanghai and Beijing, contributed the highest figures. To cope with high fertility in the inland areas as well as massive population inflow into the urban areas simultaneously, increasing the number of medium-sized cities to be located in the inland areas could be a solution. For CO2 emission per capita, the figures for the North-Eastcrn provinces and South-Eastern provinces along the coast are remarkable. The estimate of total emission of CO2 by 2010 is 1.6 million tons, a 74 per cent increase from 1992. Energy transition is the key to the stabilization of CO2 emission in China.


Author(s):  
Anmol Sharma

Abstract: Air Pollution has become one of the significant factors behind the increase in world-wide mortality rate. There are several reasons behind this increased rate such as rapid growth of industrialization, vehicular pollution accompanied by increase in urbanisation and burning of fossil fuels. This paper presents the proper management and mitigation plan (action plan) of air pollution scenario for the city Prayagraj based upon emissions. Some major air pollutants under consideration in the city of Prayagraj are Particulate Matter (PM10) and particulate matter (PM2.5). There are several prominent sources within and outside prayagraj contributing to PM10 and PM2.5 ambient air; these pollutants can be taken as surrogate of other pollutants also, as most of the pollutants coexist and have common sources. Several major sources of pollution in the city have been noted such as from Domestic, Vehicular Pollution, Road dust, Municipal solid waste (MSW) and Brick kiln. Based upon emissions calculated from these major sources a proper mitigation and management plan has been prepared for the city. Keywords: Air pollution, Particulate Matter, Prayagraj city, Action Plan, Emissions.


2015 ◽  
Vol 16 (1) ◽  
pp. 125-134
Author(s):  
Joanna Sender ◽  
Weronika Maślanko

Abstract In urban ecosystems, typically created by humans, it is very difficult to balance the needs of all its inhabitants. Significance of nature in the cities has been perceived since the ancient times. In the city there are many problems associated with the lack or sometimes excess of water, as well as poor quality. In times of water resources decline and their progressive degradation, each aquatic ecosystem should be investigated because of its values. Among the aquatic ecosystems occurring in the cities, there are: river valleys, natural lakes, water reservoirs, as well as small bodies of water. The aim of this study is to raise public awareness about the role of aquatic ecosystems in cities with different sizes and with a varying number of inhabitants. All respondents in each type of city felt the need of water presence in their surroundings and treated it as a necessary part of the proper functioning, as well as a place for rest and recreation. However, lack of management and a poor ecological status of them were noticed


2020 ◽  
Author(s):  
Qixiang Cai ◽  
Ning Zeng ◽  
Fang Zhao ◽  
Pengfei Han ◽  
Di Liu ◽  
...  

Abstract BackgroundThe CO2 released by humans and livestock through digestion and decomposition is an important part of the urban carbon cycle. But this part is reraly condidarded in the stuties of city carbon budget since its annual magnitude is lower than that of fossil fuel emissions within the boundaries of cities. However, human and livestock respiration may be substantial compared to fossil fuel emissions in areas with high population density such as Manhattan or Beijing. High-resolution datasets of CO2 release from respiration also have rarely been reported on a global scale or in cities globally. Here, we estimate the CO2 released by human and livestock respiration at global and large city scales and then compare it with the carbon emissions inventory from fossil fuels in 14 cities worldwide.ResultsThe results show that the total human and livestock respiration is up to 38.1% of fossil fuel emissions for Delhi among the studied cities. The proportion could be larger than 10% in cities of Sao Paulo, Cape Town and Tokyo. In other cities, it is raletivily small with a proportion around 5%, while Washington DC has the least proportion in 2.8%. In addition, almost 90% of respiratory carbon comes from urban areas in most cities, while up to one-third comes from suburban areas in Beijing on account of the siginificant livestock production.ConclusionThe results suggest that the respiration of humans and livestock represents a significant CO2 source in some cities and is nonnegligible for city carbon budget analysis and carbon monitoring.


Air quality emergency in urban communities is mostly because of vehicular emanations. Transportation frameworks are expanding all over the place and the enhancements in innovation are deficient to neutralize development. Transport sections contribute a large offer to natural emissions (around 70 percent). One of these CO pollutants is the considerable emission from the part of the vehicle that contributes 90 percent of the total discharge. Next to CO are hydrocarbons. It is certainly surprising to see that the transport segment's contribution to particulate pollution is as small as 3.5 percent; most of the SPM is created as a result of residual re-suspension from which PM10 is the most visible air poison. NOx is another significant indicator of air quality. Each of these circumstances shows that air contamination is becoming a major issue in the Indian setting and that there is a fundamental need to develop sound condition and increase the level of research around the world. This investigation is a survey of an evaluation model of produced poisons and powerful techniques to reduce air contamination due to street transportation.


Sign in / Sign up

Export Citation Format

Share Document