scholarly journals Sourdough Bread from the Blend of Cassava, Sweet Potato, and Soybean Flours Using Lactobacillus Plantarum and Pichia Kudriavzevii

2020 ◽  
Vol 49 (4) ◽  
pp. 441-450
Author(s):  
K. Banwo ◽  
O. Osagbemi ◽  
O. Ajao ◽  
A. Sanni

Sourdough is specialty bread made from a combination of flour, lactic acid bacteria, and yeasts. Composite flour of cassava, sweet potato, and soybean was used for the production of sourdough bread employing autochthonous lactic acid bacteria and yeasts isolated from the composite dough. The flour samples were assessed for functional properties, while the sourdough breads were evaluated for nutritional composition and organoleptic properties. The flour samples possessed good proximate profiles and phenolic contents. The lactic acid bacterium and yeast with the most desirable properties were identified as Lactobacillus plantarum and Pichia kurdriazevii. Fermentation improved the nutritional indices of the composite sourdough bread samples. Lactobacillus plantarum SLC21 and P. kudriavzevii SYD17 bread had a shelf life of 7 days, while the control bread lasted for at least 4 days. Lactobacillus plantarum SLC21 and Pichia kudriavzevii SYD17 bread had the best overall acceptability. Utilisation of these local crops in a composite blend for sourdough will increase commercial profit for local farmers and developing economy. The composite blend will be of great importance in the preparation of pastries that do not require high gluten content. The strains exhibited great potentials for a better nutritional composition of the composite sourdough bread.

2019 ◽  
Vol 21 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Tatik Khusniati ◽  
Nanda Sabbaha Nur Kasfillah ◽  
Vilya Syafriana ◽  
Resti Sofia Zahara ◽  
Padmono Citroreksoko ◽  
...  

Protease hidrolyzed protein in flour in order to more digest by human ulcer. Lactobacillus plantarum B110 and Lactobacillus satsumensis are indigenous lactic acid bacteria that produce protease. The objective of this research is to characterization of protease crude extract from indigenous lactic acid bacteria and the protein degradation capacity in local tuber and cereal paste flour. Tuber and cereal flour used were purple sweet potato (Dioscorea alata), cassava (Manihot esculenta), rice (Oryza sativa), corn (Zea mays) and wheat (Triticum) as comparison. Proteaseactivity was tested by Horikoshi method (1971) and protein degradation was by formol titration. Research results showed that optimum activities and stabilities of Lactobacillus plantarum B110 were at pH: 7.5, 45oC and pH:5.0-8.0, 35-50oC, while that L. satsumensis EN 38-32 were at pH: 7.0, 40oC and pH:6.0-8.0, 20-45oC. Increases in protein degradation capacity of the paste flour additional proteases crude extract from L. plantarum B110 were 0.0838% (purple sweat potato), 1.3299% (cassava), 0.5834% (corn), 0.7499% (rice) and 1.5551% (wheat as comparison); while that L. satsumensis EN 38-32 were 0.20% (purple sweet potato), 0.32% (cassava), 0.87% (corn), 1.17% (rice). Based on increases in protein degradation capacity, protease crude extract from L. plantarum B110 and L. satsumensis EN 38- 32 were sequently better to hidrolyze protein of cassava and rice paste flour than thatother tuber and cereal.


Author(s):  
Agustina Intan Niken Tari ◽  
Catur Budi Handayani ◽  
Sri Hartati

Synbiotic yogurt with purple sweet potato extract supplementation as prebiotics and Lactobacillus plantarum Dad 13 isolated from buttermilk as probiotics has potential as functional food, but requires low storage temperatures. The freeze drying technique requires cryoprotectant as a protective material for products such as yogurt. The purpose of this study was to determine the effect of sucrose concentration on the level of viability of  Lactic Acid Bacteria and Lactobacillus plantarum. This study used a Completely Randomized Design with one factor : concentration of sucrose as cryoprotectant: 0%, 2.5%, 5%, 7.5%, and was carried out in three replications. The results showed that the concentration of sucrose significantly affected the yield of freeze dried synbiotic yogurt, total Lactic Acid Bacteria (LAB) after freeze drying, and total Lactobacillus plantarum before and after freeze drying, but did not significantly total amount of LAB before freeze drying. The best treatment, shown in frozen dried synbiotic yogurt with a sucrose cryoprotectant concentration of 5%. The treatment has the following characteristics: yield, 14.797%, total Lactic Acid Bacteria  1.98x 109 CFU / ml before freeze drying, 9.28x 108 CFU / ml after freeze drying, total Lactobacillus plantarum 8.23 x 108 CFU / ml before freeze drying and 6.81 x 108 CFU / ml after freeze drying.


2021 ◽  
Vol 27 (4) ◽  
pp. 868-879
Author(s):  
Hye-ran Son ◽  
Sang-Mo Kang

In order to use lactic acid bacteria isolated from Mulkimchi as a raw material for cosmetics, strain screening was carried out. And we measured the antioxidant activity of the lactic acid bacteria heat-killed cells obtained by heating lactic acid bacteria isolated from Mulkimchi. Among lactic acid bacteria derived from Mulkimchi, 41 strains were selected based on the culture suitability such as growth rate and antibiotic resistance. DPPH assay, ABTS assay, nitrite radical scavenging activity assay, and total phenolic contents were measured for 41 strains. Based on Lactobacillus plantarum LP299v, 1 strain was selected through DPPH assay, 1 strain through ABTS assay, 1 strain through nitrite radical scavenging activity assay, and 1 strain through total phenolic contents measurement. Among these, we isolated Lactobacillus sp. P100, which showed excellent antioxidant activity in all experimental methods, and the result of identification through 16s rRNA showed Lactobacillus plantarum. The strain showed 3-10% better antioxidant activity than Lactobacillus plantarum LP299v. And we measured the cell toxicity and anti-inflammatory activity. Lactobacillus sp. P100 showed the lowest cell toxicity and the highest NO production inhibitory rate. In other words, we could isolate lactic acid bacteria that can be used as an antioxidant ingredient in cosmetics from Mulkimchi.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 963
Author(s):  
Jon Kepa Izaguirre ◽  
Leire Barañano ◽  
Sonia Castañón ◽  
Itziar Alkorta ◽  
Luis M. Quirós ◽  
...  

Soybeans and soy-based products contain isoflavones which can be used for nutraceutical and medical applications. In soybeans and in unfermented soy foods, isoflavones are normally present as glycosides. Isoflavone glycosides can be enzymatically converted to isoflavone aglycones, thus releasing the sugar molecule. The effective absorption of isoflavones in humans requires the bioconversion of isoflavone glycosides to isoflavone aglycones through the activity of the enzyme β-glucosidase. The objective was to assess the capacity of 42 bacterial strains (belonging to Lactobacillus, Streptococcus and Enterococcus) to produce β-glucosidase activity. The strain that showed the highest β-glucosidase activity (Lactobacillus plantarum 128/2) was then used for the optimization of the bioconversion of genistin and daidzin present in commercial soymilk to their aglycone forms genistein and daidzein. The contribution of process parameters (temperature, inoculum size, time) to the efficiency of such bioactivation was tested. Lactobacillus plantarum 128/2 was able to completely bioactivate soymilk isoflavones under the following conditions: 25 °C temperature, 2% inoculum size and 48 h process time. These results confirm the suitability of lactic acid bacteria for the bioactivation of isoflavones present in soymilk and provide an interesting candidate (L. plantarum 182/2) for food industries to perform this transformation.


2021 ◽  
Vol 11 (13) ◽  
pp. 5765
Author(s):  
Joo-Yun Kim ◽  
Eun-Jung Choi ◽  
Jae-Ho Lee ◽  
Myeong-Seok Yoo ◽  
Keon Heo ◽  
...  

Vitamin B2, also known as riboflavin, is essential for maintaining human health. The purpose of this study was to isolate novel lactic acid bacteria that overproduce vitamin B2 and to validate their potential as probiotics. In this study, Lactobacillus plantarum HY7715 (HY7715) was selected among lactic acid bacteria isolated from Kimchi. HY7715 showed a very high riboflavin-producing ability compared to the control strain due to the high expression of ribA, ribB, ribC, ribH, and ribG genes. HY7715 produced 34.5 ± 2.41 mg/L of riboflavin for 24 h without consuming riboflavin in the medium under optimal growth conditions. It was able to produce riboflavin in an in vitro model of the intestinal environment. In addition, when riboflavin deficiency was induced in mice through nutritional restriction, higher levels of riboflavin were detected in plasma and urine in the HY7715 administration group than in the control group. HY7715 showed high survival rate in simulated gastrointestinal conditions and had antibiotic resistance below the cutoff MIC value suggested by the European Food Safety Authority; moreover, it did not cause hemolysis. In conclusion, HY7715 could be considered a beneficial probiotic strain for human and animal applications, suggesting that it could be a new alternative to address riboflavin deficiency.


2015 ◽  
Vol 6 (4) ◽  
pp. 505-512 ◽  
Author(s):  
M. Yakovlieva ◽  
T. Tacheva ◽  
S. Mihaylova ◽  
R. Tropcheva ◽  
K. Trifonova ◽  
...  

In recent years, many authors have investigated the possible antidiabetic effect of lactic acid bacteria. Lactobacillus species constitute a major part of the lactic acid bacteria group and have been found to exhibit beneficial effects on the development of diabetes and its complications. In the current study, we investigated the effects of newly characterised Bulgarian Lactobacillus strains, Lactobacillus brevis 15 and Lactobacillus plantarum 13, on blood glucose levels and body weight of rats fed a fructose-enriched diet. An experiment was conducted over a period of 8 weeks with 24 2-month-old Wistar rats randomly assigned to receive a standard diet (Con, control group), fructose-enriched diet (Fr group), standard diet with probiotics given twice a week (Pro group), and fructose-enriched diet with probiotics given twice a week (Pro+Fr group). At the end of the experimental period, a statistically significant increase in body weight was observed in all experimental groups (P<0.0001). The highest rise was seen in the fructose group (Fr, 169±19 g), followed by the Pro+Fr group (153±15 g), Pro group (149±13 g), and Con group (141±5 g). Moreover, the final blood glucose levels had risen significantly in the groups receiving fructose either without (Fr; P<0.0001) or with lactobacilli (Pro+Fr; P=0.002), while the rise was insignificant in the group of rats given probiotic supplementation only (Pro, P=0.071) and inexistent in the Con group (P=0.999). The highest elevation of blood glucose levels was observed in the Fr group (3.18 mmol/l), followed by the Pro+Fr group (2.00 mmol/l) whereas the Pro group showed the lowest levels (0.60 mmol/l). The results of our study suggest that the newly characterised Bulgarian Lactobacillus strains, L. brevis 15 and L. plantarum 13, could be considered as possible probiotics and might be able to prevent some metabolic disturbances.


Sign in / Sign up

Export Citation Format

Share Document