Parkinson’s puzzle

2012 ◽  
Vol 153 (52) ◽  
pp. 2060-2069 ◽  
Author(s):  
András Guseo

Parkinson’s disease is one of the most frequent progressive degenerative disorders with unknown origin of the nervous system. The commutation of the disease on Guam led to the discovery of a neurotoxin which was also found in other continents. This neurotoxin was identified in the common cyanobacteria (blue-green algae). Early clinical observations suggested some loose correlations with gastric and duodenal ulcer and Parkinson’s disease, while recent studies revealed a toxin, almost identical to that found in cyanobacteria in one strain of Helicobacter pylori, which proved to cause Parkinson like symptoms in animals. Therefore, it cannot be ruled out that there is a slowly progressive poisoning in Parkinson’s disease. The disease specific alpha-sinuclein inclusions can be found in nerve cells of the intestinal mucosa far before the appearance of clinical symptoms indicating that the disease may start in the intestines. These results are strengthened by the results of Borody’s fecal transplants, after which in Parkinson patients showed a symptomatic improvement. Based on these observations the Parkinson puzzle is getting complete. Although these observations are not evidence based, they may indicate a new way for basic clinical research, as well as a new way of thinking for clinicians. These new observations in psycho-neuro-immunology strengthen the fact that immunological factors may also play a critical factor facilitating local cell necrosis which may be influenced easily. Orv. Hetil., 2012, 153, 2060–2069.

Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 371
Author(s):  
Patrycja Pawlik ◽  
Katarzyna Błochowiak

Many neurodegenerative diseases present with progressive neuronal degeneration, which can lead to cognitive and motor impairment. Early screening and diagnosis of neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) are necessary to begin treatment before the onset of clinical symptoms and slow down the progression of the disease. Biomarkers have shown great potential as a diagnostic tool in the early diagnosis of many diseases, including AD and PD. However, screening for these biomarkers usually includes invasive, complex and expensive methods such as cerebrospinal fluid (CSF) sampling through a lumbar puncture. Researchers are continuously seeking to find a simpler and more reliable diagnostic tool that would be less invasive than CSF sampling. Saliva has been studied as a potential biological fluid that could be used in the diagnosis and early screening of neurodegenerative diseases. This review aims to provide an insight into the current literature concerning salivary biomarkers used in the diagnosis of AD and PD. The most commonly studied salivary biomarkers in AD are β-amyloid1-42/1-40 and TAU protein, as well as α-synuclein and protein deglycase (DJ-1) in PD. Studies continue to be conducted on this subject and researchers are attempting to find correlations between specific biomarkers and early clinical symptoms, which could be key in creating new treatments for patients before the onset of symptoms.


2021 ◽  
pp. 107385842199226
Author(s):  
Stellina Y. H. Lee ◽  
Nathanael J. Yates ◽  
Susannah J. Tye

Inflammation is a critical factor contributing to the progressive neurodegenerative process observed in Parkinson’s disease (PD). Microglia, the immune cells of the central nervous system, are activated early in PD pathogenesis and can both trigger and propagate early disease processes via innate and adaptive immune mechanisms such as upregulated immune cells and antibody-mediated inflammation. Downstream cytokines and gene regulators such as microRNA (miRNA) coordinate later disease course and mediate disease progression. Biomarkers signifying the inflammatory and neurodegenerative processes at play within the central nervous system are of increasing interest to clinical teams. To be effective, such biomarkers must achieve the highest sensitivity and specificity for predicting PD risk, confirming diagnosis, or monitoring disease severity. The aim of this review was to summarize the current preclinical and clinical evidence that suggests that inflammatory processes contribute to the initiation and progression of neurodegenerative processes in PD. In this article, we further summarize the data about main inflammatory biomarkers described in PD to date and their potential for regulation as a novel target for disease-modifying pharmacological strategies.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Kyota Fujita ◽  
Yusaku Nakabeppu ◽  
Mami Noda

Since the first description of Parkinson's disease (PD) nearly two centuries ago, a number of studies have revealed the clinical symptoms, pathology, and therapeutic approaches to overcome this intractable neurodegenerative disease. 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) are neurotoxins which produce Parkinsonian pathology. From the animal studies using these neurotoxins, it has become well established that oxidative stress is a primary cause of, and essential for, cellular apoptosis in dopaminergic neurons. Here, we describe the mechanism whereby oxidative stress evokes irreversible cell death, and propose a novel therapeutic strategy for PD using molecular hydrogen. Hydrogen has an ability to reduce oxidative damage and ameliorate the loss of nigrostriatal dopaminergic neuronal pathway in two experimental animal models. Thus, it is strongly suggested that hydrogen might provide a great advantage to prevent or minimize the onset and progression of PD.


2013 ◽  
Vol 71 (9A) ◽  
pp. 591-595 ◽  
Author(s):  
Raimundo Nonato Campos-Sousa ◽  
Elizabeth Maria Aparecida Barasnevicius Quagliato ◽  
Kelson James Almeida ◽  
Inacio Augusto Dias de Castro ◽  
Viriato Campelo

Introduction Detrusor hyperactivity is the leading cause of urinary dysfunction in Parkinson's disease (PD). There are few studies correlating PD clinical aspects with this autonomic feature. Methods A cohort of 63 women with PD were prospectively examined for assessment of clinical aspects and disease severity using unified Parkinson's disease rating scale and Hoehn-Yahr scale, respectively. The urologic function was evaluated by the urodynamic study. Two groups were categorized at this time - groups with and without detrusor hyperactivity. After seven years, the same parameters were re-evaluated. Results Progression of the disease on mental scores was found in the group with detrusor hyperactivity. On follow-up, clinical symptoms and severity did not show significant worsening between the groups. Conclusion Detrusor hyperactivity is a frequent urodynamic finding in PD, and even though it is associated with dopaminergic dysfunction, it cannot be blamed as a factor of worsening motor performance, but is probably associated with poor cognitive and mental prognosis.


2020 ◽  
Author(s):  
Álvaro Inglés-Prieto ◽  
Nikolas Furthmann ◽  
Samuel Crossman ◽  
Nina Hoyer ◽  
Meike Petersen ◽  
...  

AbstractOptogenetics has been harnessed to shed new mechanistic light on current therapies and to develop future treatment strategies. This has been to date achieved by the correction of electrical signals in neuronal cells and neural circuits that are affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and thereby may modify progression of degenerative disorders, has never been demonstrated in an animal disease model. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson’s disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to overcome limitations of current strategies towards a spatio-temporal regulation of tissue repair.Significance StatementThe death of physiologically important cell populations underlies of a wide range of degenerative disorders, including Parkinson’s disease (PD). Two major strategies to counter cell degeneration, soluble growth factor injection and growth factor gene therapy, can lead to the undesired activation of bystander cells and non-natural permanent signaling responses. Here, we employed optogenetics to deliver cell type-specific pro-survival signals in a genetic model of PD. In Drosophila and human cells exhibiting loss of the PINK1 kinase, akin to autosomal recessive PD, we efficiently suppressed disease phenotypes using a light-activated tyrosine kinase receptor. This work demonstrates a spatio-temporally precise strategy to interfere with degeneration and may open new avenues towards tissue repair in disease models.


2017 ◽  
Vol 57 (8) ◽  
pp. 425-429 ◽  
Author(s):  
Hiroko Hori ◽  
Aki Kuratomi ◽  
Masatoshi Ishizaki ◽  
Tetsuro Sakamoto ◽  
Yasuto Nishida ◽  
...  

2019 ◽  
Vol 40 (3) ◽  
pp. 357-367
Author(s):  
Jaya Sanyal ◽  
Athira Anirudhan ◽  
Tapas Kumar Banerjee ◽  
Gautam Guha ◽  
Ramakrishnan Veerabathiran ◽  
...  

Biomolecules ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 271 ◽  
Author(s):  
Michele Ciulla ◽  
Lisa Marinelli ◽  
Ivana Cacciatore ◽  
Antonio Di Stefano

The use of food supplements or functional food has significantly increased in the past decades, especially to compensate both the modern lifestyle and the food shortages of the industrialized countries. Despite food supplements are habitually intended to correct nutritional deficiencies or to support specific physiological functions, they are often combined with common drug therapies to improve the patient’s health and/or mitigate the symptoms of many chronic diseases such as cardiovascular diseases, cystic fibrosis, cancer, liver and gastrointestinal diseases. In recent years, increased attentions are given to the patient’s diet, and the use of food supplements and functional food rich in vitamins and antioxidants plays a very important role in the treatment and prevention of neurodegenerative diseases such as Parkinson’s disease (PD). Natural compounds, phytochemicals, vitamins, and minerals can prevent, delay, or alleviate the clinical symptoms of PD in contrast to some of the main physiopathological mechanisms involved in the development of the disease, like oxidative stress, free radical formation, and neuroinflammation. The purpose of this review is to collect scientific evidences which support the use of specific biomolecules and biogenic elements commonly found in food supplements or functional food to improve the clinical framework of patients with PD.


Sign in / Sign up

Export Citation Format

Share Document