Computational Analysis of Coupled Anisotropic Chemical Expansion in Li2-XMnO3-δ

MRS Advances ◽  
2016 ◽  
Vol 1 (15) ◽  
pp. 1037-1042 ◽  
Author(s):  
Christine James ◽  
Yan Wu ◽  
Brian Sheldon ◽  
Yue Qi

ABSTRACTDuring the activation and charge process, vacancies are generated in the Li2MnO3 component in lithium-rich layered cathode materials. The chemical expansion coefficient tensor associated with oxygen vacancies, lithium vacancies and a Li-O vacancy pair were calculated for Li2-xMnO3-δ. The chemical expansion coefficient was larger for oxygen vacancies than for lithium vacancies in most directions. Additionally, the chemical expansion coefficient for a Li-O vacancy pair was shown to not be a linear sum of the chemical expansion coefficients of the two vacancy types, suggesting that the oxygen vacancies and lithium vacancies in Li2-XMnO3-δ exhibit a coupling effect.


2022 ◽  
Author(s):  
Yuxi Ma ◽  
Quan Zhou ◽  
Jason D. Nicholas

The temperature dependence of a Mixed Ionic Electronic Conducting (MIEC) material’s thermo-chemical expansion coefficient, biaxial modulus, and/or Young’s modulus are crucial in determining the internal stress, strain, and/or mechanical stability...



2015 ◽  
Vol 3 (7) ◽  
pp. 3602-3611 ◽  
Author(s):  
Nicola H. Perry ◽  
Jae Jin Kim ◽  
Sean R. Bishop ◽  
Harry L. Tuller

To evaluate stability in energy conversion devices, thermal and chemical expansion coefficients (CTE, CCE) of Sr(Ti,Fe)O3−α were measured and deconvoluted for the first time, revealing an oxygen stoichiometry-dependent CTE and temperature-dependent CCE.



2018 ◽  
Vol MA2018-01 (32) ◽  
pp. 1942-1942
Author(s):  
Yuxi Ma ◽  
Jason D. Nicholas

A Multi-beam Optical Stress Sensor (MOSS) is a curvature measurement platform which is commonly used to measure the film stress in bilayer samples. It has been widely used as an in-situ technique to measure the film stress during deposition.1 However, when combined with the dual substrate method proposed by Zhao et al,2 in situ curvature measurements can be used to measure Young’s moduli and thermo-chemical expansion coefficients simultaneously as a function of temperature. Using the curvature relaxation (κR) technique developed recently,3-5 oxygen surface exchange coefficients (kchem) can also be measured as a function of temperature using in situ curvature measurements. In this work, the Young’s moduli, thermo-chemical expansion coefficients and kchem values of praseodymium doped ceria (PCO) were measured as a function of temperature using a MOSS. First, phase pure Pr0.1Ce0.9O1.95 (PCO) powder was prepared through glycine nitrate combustion and subsequent calcination at 1100oC in air. This powder was then pressed in a stainless-steel die and fired to 1450oC to produce a pulsed laser deposition (PLD) target. In preparation for PLD, (001) oriented 9.5% yttria doped zirconia (YSZ) and (001) oriented magnesium oxide (MgO) substrates (Crystec, GmbH) were pre-annealed at 1450oC for 20 hours to remove residual stress within them. PCO PLD was then conducted at 680oC for 20 min, with a 10-2 torr oxygen partial pressure and 350 mJ power density. After deposition, the PCO bilayers were re-equilibrated with air by firing them in air at 1000oC for 1 hour. For dual substrates measurements, stress vs. temperature data for PCO|YSZ and PCO|MgO were collected with a 1oC/min heating rate and a 0.2oC/min cooling rate. The slopes of the stress vs. temperature curves can be expressed by: dσPCO|YSZ/dT = MPCO(αYSZ-αPCO) (1) dσPCO|MgO/dT = MPCO(αMgO-αPCO) (2) where is the stress of bilayer sample, T is the temperature, M is the biaxial modulus of the film, is the thermo-chemical expansion coefficient. With two unknowns and two equations, and were then extracted as a function of temperature. The Young’s moduli were then calculated from assuming a Poisson’s ratio of 0.33 as has been done previously for 6. For κR measurements, relaxation data were recorded at 650~725oC with 25oC increments. The oxygen partial pressure was switched between synthetic air (20%O2-80%Ar) and 10% diluted synthetic air (10% synthetic air-90%Ar). Figure 1 shows the Young’s modulus and thermo-chemical expansion coefficients measured here compared to other literature studies.6-8 In contrast to other studies the present study produced PCO Young’s moduli over a complete range of temperatures. In addition, the PCO Young’s moduli started to decrease significantly once the PCO started to become nonstoichiometric (as indicated by an uptick in chemical expansion in Figure 1b). The PCO kchem values (not shown) were in good agreement with the kchem values measured by other electrode-free techniques, such as optical relaxation.9 Figure 1



1999 ◽  
Vol 14 (1) ◽  
pp. 2-4 ◽  
Author(s):  
Rui-sheng Liang ◽  
Feng-chao Liu

A new method is used in measuring the linear thermal expansion coefficients in composite consisting of a substrate Gd3Ga2Ga3O12 (GGG) and its epitaxial layer Y3Fe2Fe3O12 (YIG) within the temperature range 13.88 °C–32.50 °C. The results show that the thermal expansion coefficient of GGG in composite is larger than that of the GGG in single crystal; the thermal expansion coefficient of thick film YIG is also larger than that of thin film. The results also show that the thermal expansion coefficient of a composite consisting of film and its substrate can be measured by using a new method.



Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 456
Author(s):  
Donghua Yue ◽  
Liming Wei

In this paper, a device with high accuracy capacitive sensor (with the error of 0.1 micrometer) is constructed to measure the axial thermal expansion coefficent of the twisted carbon fibers and yarns of Kevlar. A theoretical model based on the thermal elasticity and the geometrical features of the twisted structure is also presented to predict the axial expansion coefficient. It is found that the twist angle, diameter and pitch have remarkable influences on the axial thermal expansion coefficients of the twisted carbon fibers and Kevlar strands, and the calculated results are in good agreement with experimental data. We found that, with the increase of the twist angle, the absolute value of the axial thermal expansion coefficient increases. For the Kevlar samples, the expansion coefficient will grow by about 46% when the twist angle increases from 0 to 25 degrees, while the carbon fiber samples will grow by about 72% when the twist angle increases from 0 to 35 degrees. The experimental measurements and the model calculations reveal important properties of the thermal expansion in the twisted structures. Most notably, the expansion of the strand during heating or cooling can be zero when the twist angle is around β = arcsin(αL/αT)^1/2, where β denotes twist angle of the strand and αL, αT are the longitute and the transverse thermal expansion coefficient of the strand, respectively. According to the present experiments and analyses, a method to control the axial thermal expansion coefficient of this new kind of twisted structure is proposed. Moreover, the mechanism of this tunable thermal expansion is discussed. Based on the model, a method that can be used to rectify the thermal expansion properties of the twist structures is established. This may be a new way of fabricating zero expansion composite materials in the future.



Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 397 ◽  
Author(s):  
Mohammadreza Elahifard ◽  
Mohammad Reza Sadrian ◽  
Amir Mirzanejad ◽  
Reza Behjatmanesh-Ardakani ◽  
Seyedsaeid Ahmadvand

Oxygen deficiency (O-vacancy) contributes to the photoefficiency of TiO2 semiconductors by generating electron rich active sites. In this paper, the dispersion of O-vacancies in both bulk and surface of anatase and rutile phases was computationally investigated. The results showed that the O-vacancies dispersed in single- and double-cluster forms in the anatase and rutile phases, respectively, in both bulk and surface. The distribution of the O-vacancies was (roughly) homogeneous in anatase, and heterogenous in rutile bulk. The O-vacancy formation energy, width of defect band, and charge distribution indicated the overlap of the defect states in the rutile phase and thus eased the formation of clusters. Removal of the first and the second oxygen atoms from the rutile surface took less energy than the anatase one, which resulted in a higher deficiency concentration on the rutile surface. However, these deficiencies formed one active site per unit cell of rutile. On the other hand, the first O-vacancy formed on the surface and the second one formed in the subsurface of anatase (per unit cell). Supported by previous studies, we argue that this distribution of O-vacancies in anatase (surface and subsurface) could potentially create more active sites on its surface.



MRS Advances ◽  
2018 ◽  
Vol 3 (10) ◽  
pp. 537-545 ◽  
Author(s):  
Jessica G. Swallow ◽  
Mostafa Youssef ◽  
Krystyn J. Van Vliet

ABSTRACTChemomechanical coupling is a hallmark of the functional oxides that are used widely for energy conversion and storage applications including solid oxide fuel cells (SOFCs). These oxides rely on the presence of oxygen vacancies to enable important properties including ionic conductivity and gas exchange reactivity. However, such defects can also facilitate chemical expansion, or coupling between material volume and defect content. Such chemomechanical coupling is particularly relevant with the recent interest in thin film SOFCs which have the potential to decrease operating temperatures and enable portable applications. Thin films present a particular challenge for modelling, as experimental results indicate that film defect chemistry can differ significantly from bulk counterparts under the same experimental conditions. In this study, we explore the influence of point defects, including oxygen vacancies and cation dopants, on the elastic properties of a model material, PrxCe1-xO2-δ (PCO), using density functional theory (DFT + U) simulations. Previously, we showed that PCO films exhibit a decrease in Young’s elastic modulus E due to chemical expansion, but that this decrease can be larger than predicted based on bulk defect models. Here, we apply DFT + U to show that the biaxial elastic modulus of PCO decreases with increased oxygen vacancy content in both bulk and membrane forms. We consider the relative influences of oxygen vacancies and cation dopants on this trend, and highlight local structural changes in the presence of such defects. By relating our computational and experimental results, we evaluate the relative importance of increased oxygen vacancy content and finite thickness on the mechanical properties of oxides that are subject to chemical expansion under operando conditions. This work informs the design of μ-SOFCs, emphasizing the need to characterize thin films separately from bulk counterparts and demonstrating how functional defect content can influence development of stress and strain in devices by changing both material volume and elastic properties.



Author(s):  
Iman Zahmatkesh

Currently, volume-averaging approximation is in common use for the description of thermal expansion coefficient of nanofluids in terms of expansion coefficients of their constituents. The accuracy of this method is not, however, so clear since it ignores the dependence of density on temperature in the prediction of thermal expansion coefficient that may not be true in natural convection circumstances. In the current contribution, attention is focused to clarify how predictions of flow and thermal fields as well as heat transfer and entropy generation characteristics during natural convection of nanofluids may be influenced if one adopts the volume-averaging approximation for the description of thermal expansion coefficient. For this purpose, a porous enclosure saturated with several water-based nanofluids is simulated and results of the volume-averaged thermal expansion coefficient are compared with those of a recent correlation that takes into account the dependence of density on temperature.



1984 ◽  
Vol 17 (5) ◽  
pp. 359-360
Author(s):  
S. K. Shadangi ◽  
U. K. Shadangi ◽  
S. C. Panda

The Debye–Scherrer pattern of the alloy Ni80Zr20 clearly shows the presence of a nickel solid-solution phase along with a new intermetallic phase Ni23Zr6, which seems to be isostructural with the Co23Zr6 phase. The thermal expansion coefficient of the Ni23Zr6 phase has been investigated in the temperature range 1003–1493 K. Linear variation of lattice parameter with temperature has been observed. The thermal expansion coefficient remains almost constant throughout this temperature interval.



Sign in / Sign up

Export Citation Format

Share Document