Characterization of inclusions and second-phase particles in high-Mn TWIP steels microalloyed with Ti, Ti/B, Nb, V and Mo, in as-solutioned condition

MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3023-3033
Author(s):  
D. Mijangos ◽  
I. Mejía ◽  
J. M. Cabrera

AbstractIn recent years there has been an increase in the field of research of advanced steels that have excellent mechanical properties combining high strength with excellent ductility. Within this range of advanced steels are the stable austenitic phase steels at room temperature of twinning induced plasticity known as TWIP. An important aspect to highlight about TWIP steels is their addition with different microalloying elements, generally less than 0.20 wt. %, which are forming precipitated phases such as carbides, nitrides and carbonitrides, and directly or indirectly control and/or modify microstructure and mechanical properties in these steels. Microalloying elements can cause a higher degree of hardening due to the formation of precipitates and grain refinement. The present research work studies the inclusions and second-phase particles formed in Fe–21Mn–1.3Si–1.6Al TWIP steels microalloyed with Ti, Nb, V, Mo and Ti/B in as-solution condition. TWIP steels melted in induction furnace were homogenized and hot-rolled at 1200 °C with reduction of 60 %. Subsequently, rolled plates were solubilized at 1100 °C followed by water quench. Thermodynamics-based predictions of inclusions and second-phases of different TWIP steels were carried out using JMatPro®V.9.1.2. Metallographic characterization was carried out by light optical and scanning electron microscopies (LOM, SEM), while second-phase particles characterization was performed using energy dispersion spectroscopy (SEM-EDS). Also, Vickers microhardness tests were carried out in accordance to ASTM E92 standard. In general, results showed the formation of inclusions of AlN and MnS at higher temperatures, which act as nuclei points for the precipitation particles of each type of microalloying element (TiN, TiC, Nb (C, N), VC and MoC) at lower temperatures. The studied TWIP steels exhibit similar microhardness values, since the microalloying elements are mostly dissolved in solid solution. The TWIP steels microalloyed with V and Ti exhibited the highest microhardness values.

2020 ◽  
Vol 27 ◽  
pp. 50-60
Author(s):  
Guy Ben Hamu ◽  
Polina Metalnikov

Magnesium (Mg) alloys constitute an attractive structural material for transportation industries, due to their low density and high strength/weight ratio. However, high susceptibility to corrosion of Mg alloys limits their use. Therefore, there is a growing interest for development of new Mg alloys with good mechanical properties and superior corrosion resistance. Production of wrought Mg alloys results in enhancement of mechanical properties, whereas addition of alloying elements may result in improved corrosion behavior. In this study we distinguish the role of aluminum, zinc, tin and calcium additions on the corrosion performance of new wrought Mg alloys. Overall, addition of alloying elements resulted in precipitation of second phase particles with cathodic behavior (relatively to Mg matrix). This enhanced the micro-galvanic effects and the corrosion resistance in short periods of immersion was deteriorated. However, in longer periods of immersion the passive characteristics of the oxide layer played a significant role in improving the alloys' corrosion resistance. The contribution of each element to the oxide layer will be discussed in detail. In general, the quantities of alloying element should be sufficient to stabilize the corrosion products layer; yet as low as possible, in order to reduce the micro-galvanic effects.


2013 ◽  
Vol 762 ◽  
pp. 551-555 ◽  
Author(s):  
Marek Stanislaw Węglowski ◽  
Marian Zeman ◽  
Miroslaw Lomozik

In the present study, the investigation of weldability of new ultra-high strength - Weldox 1300 steel has been presented. The thermal simulated samples were used to investigate the effect of welding cooling time t8/5 on the microstructure and mechanical properties of the heat affected zone (HAZ). In the frame of these investigation the microstructure was studied by the light (LM) and transmission electron microscopies (TEM). It has been shown that the microstructure of the Weldox 1300 steel is composed of tempered martensite, and inside the laths the minor precipitations mainly V(CN) and molybdenum carbide Mo2C were observed. Mechanical properties of parent material were analysed by the tensile, impact and hardness tests. In details the influence of cooling time in the range of 2,5 - 300 s. on hardness, impact toughness and microstructure of simulated HAZ was studied by using welding thermal simulation test. The results show that the impact toughness and hardness decrease with the increase of t8/5 under the condition of a single thermal cycle in simulated HAZ. The continuous cooling transformation diagrams (CCT-W for welding conditions) of Weldox 1300 steel for welding purposes was also elaborated. The steel Weldox 1300 for cooling time in the range of 2,5 - 4 s showed martensite microstructure, for time from 4 s to 60 s mixture of martensite and bainite, and for longer cooling time mixture of ferrite, bainite and martensite. The results indicated that the weldability of Weldox 1300 steel is limited and to avoid the cold cracking the preheating procedure or medium net linear heat input should be used.


2003 ◽  
Vol 19 (7) ◽  
pp. 887-896 ◽  
Author(s):  
G. Liu ◽  
G.-J. Zhang ◽  
X.-D. Ding ◽  
J. Sun ◽  
K.-H. Chen

2014 ◽  
Vol 58 ◽  
pp. 535-542 ◽  
Author(s):  
P. Shaterani ◽  
A. Zarei-Hanzaki ◽  
S.M. Fatemi-Varzaneh ◽  
S.B. Hassas-Irani

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Florian Schmid ◽  
Philip Dumitraschkewitz ◽  
Thomas Kremmer ◽  
Peter J. Uggowitzer ◽  
Ramona Tosone ◽  
...  

AbstractPrecipitation-hardened aluminium alloys typically obtain their strength by forming second-phase particles, which, however, often have a negative effect on formability. To enable both lightweight construction and forming of complex parts such as body panels, high strength and formability are required simultaneously. Cluster hardening is a promising approach to achieve this. Here, we show that short thermal spikes, denoted as up-quenching, increase aging kinetics, which we attribute to the repeated process of vacancies being formed at high temperatures and retained when cooled to lower temperatures. Combined with further heat treatment, the up-quenching process promotes rapid and extensive cluster formation in Al-Mg-Si alloys, which in turn generates significant strengthening at industrially relevant heat treatment time scales. The high elongation values also observed are attributed to reduced solute depleted zones along grain boundaries.


MRS Advances ◽  
2018 ◽  
Vol 3 (64) ◽  
pp. 3949-3956
Author(s):  
H. Hernández-Belmontes ◽  
I. Mejía ◽  
V. García-García ◽  
C. Maldonado

ABSTRACTHigh-Mn Twinning Induced Plasticity (TWIP) steels are an excellent alternative in the design of structural components for the automotive industry. The TWIP steels application allows weight reduction, maintaining the performance of vehicles. Nowadays the research works focused on TWIP steel weldability are relative scarce. It is well-known that weldability is one of the main limitations for industrial application of TWIP steel. The main goal of this research work was studied the effect of heat input on the microstructural changes generated in a TWIP steel microalloyed with Ti. A pair of welds were performed through Gas Tungsten Arc Welding (GTAW) process. The GTAW process was carried out without filler material, using Direc Current Electrode Negative (DCEN), tungsten electrode EWTh-2 and Ar as shielding gas. The microstructure and average grain size in the fusion (FZ) and heat affected zone (HAZ) were determined by light optical metallography (LOM). Elements segregation in the FZ was evaluated using point and elemental mapping chemical analysis (EPMA) by Scanning Electron Microscopy and Electron Dispersive Spectroscopy (SEM-EDS). Phase transformations were evaluated using X-ray diffraction (XRD). Finally, the hardness were measured by means of Vickers microhardness testing (HV500). The results show that the FZ is characterized by a dendritic solidification pattern. Meanwhile, the HAZ presented equiaxed grains in both weld joints. On the other hand, the TWIP-Ti steel weldments did not present austenite phase transformations. Nevertheless, the FZ exhibited variations in the chemical elements distribution (Mn, Al, Si and C), which were higher as the heat input increases. Finally, the heat input reduced the microhardness of TWIP-Ti steel weld joints. Although post-welding hardness recovery was detected, which is associated with precipitation of Ti second-phase particles.


2013 ◽  
Vol 401-403 ◽  
pp. 610-613
Author(s):  
Jian Ming Wang ◽  
Yang Liu ◽  
Yan Liu ◽  
Qian He Ma

The pipeline steel as an application in pipeline construction must have good comprehensive mechanical properties due to the harsh environment of the pipeline engineering. So this experiment takes the X80 pipeline steel as the research object, the thermal stability second phase particles which would not be dissolved or aggregated at high temperature will be expected by means of adding nanomagnesium oxide into the steel with the method of carrier dispersion addition. The effect of nanometer magnesium oxide addition on the cast microstructure of X80 pipeline steel was analysed. The results show that the cast microstructure is consist of the ferrite and a small amount bainite. And the bainite is distributed at the boundary of the ferrite grains. When adding 0.02 wt% nanometer magnesium oxides, the number of bainite increases significantly in the cast microstructure, which is mostly distributed at the boundary of the ferrite grains.


2020 ◽  
Vol 24 ◽  
pp. 100956
Author(s):  
Fan Zhang ◽  
Yafei Wang ◽  
Yunbiao Duan ◽  
Kaijun Wang ◽  
Yutian Wang ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 391 ◽  
Author(s):  
Jan Bohlen ◽  
Sebastian Meyer ◽  
Björn Wiese ◽  
Bérengère J. C. Luthringer-Feyerabend ◽  
Regine Willumeit-Römer ◽  
...  

Magnesium alloys attract attention as degradable implant materials due to their adjustable corrosion properties and biocompatibility. In the last few decades, especially wrought magnesium alloys with enhanced mechanical properties have been developed, with the main aim of increasing ductility and formability. Alloying and processing studies allowed demonstrating the relationship between the processing and the microstructure development for many new magnesium alloys. Based on this experience, magnesium alloy compositions need adjustment to elements improving mechanical properties while being suitable for biomaterial applications. In this work, magnesium alloys from two Mg-Zn series with Ce (ZE) or Ca (ZX) as additional elements and a series of alloys with Ag and Ca (QX) as alloying elements are suggested. The microstructure development was studied after the extrusion of round bars with varied processing parameters and was related to the mechanical properties and the degradation behavior of the alloys. Grain refinement and texture weakening mechanisms could be improved based on the alloy composition for enhancing the mechanical properties. Degradation rates largely depended on the nature of second phase particles rather than on the grain size, but remained suitable for biological applications. Furthermore, all alloy compositions exhibited promising cytocompatibility.


2008 ◽  
Vol 368-372 ◽  
pp. 744-747
Author(s):  
Xiao Ping Liang ◽  
Shao Bo Xin ◽  
Xiao Hui Wang ◽  
Zheng Fang Yang

The wear properties of ADZ (alumina dispersed in Y-TZP) and MDZ (mullite dispersed in Y-TZP) were investigated by using a ring-on-block tribometer. The results showed that for Y-TZP ceramic, the addition of alumina phase (with 10-20% in mass fraction) leads to an improved wear resistance. With the increase of the normal load, the wear rates of ADZ ceramics increase. Under low and medium normal load (100N and 300N), the wear resistance is controlled by the hardness of ceramics, and under high normal load (500N) the fracture toughness is obviously contributed to the wear resistance of the ceramics. For MDZ ceramic, the wear resistance of 15MDZ (15wt% mullite dispersed in Y-TZP) is better than that of 20 MDZ (20wt% mullite) under the normal load from 100 N to 500 N. The mechanical properties of 15MDZ are worse than that of Y-TZP ceramic, but the wear resistance is enhanced due to the action of “needle roller bearing” of the fractured rod-like mullite particles.


Sign in / Sign up

Export Citation Format

Share Document