Formation of a ternary silicide for Ni/Ti/Si (100) and Ni/TiSi2 structures

1989 ◽  
Vol 4 (5) ◽  
pp. 1218-1226 ◽  
Author(s):  
M. Setton ◽  
J. Van der Spiegel ◽  
B. Rothman

Phase formation was studied for Ni/Ti/Si and Ni/TiSi2 structures processed by vacuum RTP. Intermetallic compounds Ni3Ti and Ti2Ni form sequentially above 425 °C for metal bilayers Ni/Ti on Si, as Ni diffuses into Ti. When the temperature reaches 550 °C, Si becomes mobile and diffuses into the Ni–Ti compound, resulting in the growth of a ternary phase Ti4Ni4Si7, (V phase). If Ni is in excess with respect to this ternary silicide, a separate layer of Ni silicide grows between the substrate and the V phase, due to the fact that Ni is the main diffusing species. For the case of an excess Ti, the Si atoms are the most mobile species during Ti silicidation. Below 700 °C, TiSi2 grows with a C 49 structure whereas a mixture of TiSi2 C 54 and V phase forms at high temperature, without phase separation in distinct layers. Ni is also a fast diffuser in TiSi2. The activation energy for the diffusion along the grain boundaries of the Ti silicide is about 1.25 ± 0.2 eV. For these Ni/TiSi2 samples too, the same V phase starts to grow at the metal/silicide interface.

Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
G.A. Botton ◽  
C.J. Humphreys

Transition metal aluminides are of great potential interest for high temperature structural applications. Although these materials exhibit good mechanical properties at high temperature, their use in industrial applications is often limited by their intrinsic room temperature brittleness. Whilst this particular yield behaviour is directly related to the defect structure, the properties of the defects (in particular the mobility of dislocations and the slip system on which these dislocations move) are ultimately determined by the electronic structure and bonding in these materials. The lack of ductility has been attributed, at least in part, to the mixed bonding character (metallic and covalent) as inferred from ab-initio calculations. In this work, we analyse energy loss spectra and discuss the features of the near edge structure in terms of the relevant electronic states in order to compare the predictions on bonding directly with spectroscopic experiments. In this process, we compare spectra of late transition metal (TM) to early TM aluminides (FeAl and TiAl) to assess whether differences in bonding can also be detected. This information is then discussed in terms of bonding changes at grain boundaries in NiAl.


2003 ◽  
Vol 762 ◽  
Author(s):  
A. Gordijn ◽  
J.K. Rath ◽  
R.E.I. Schropp

AbstractDue to the high temperatures used for high deposition rate microcrystalline (μc-Si:H) and polycrystalline silicon, there is a need for compact and temperature-stable doped layers. In this study we report on films grown by the layer-by-layer method (LbL) using VHF PECVD. Growth of an amorphous silicon layer is alternated by a hydrogen plasma treatment. In LbL, the surface reactions are separated time-wise from the nucleation in the bulk. We observed that it is possible to incorporate dopant atoms in the layer, without disturbing the nucleation. Even at high substrate temperatures (up to 400°C) doped layers can be made microcrystalline. At these temperatures, in the continuous wave case, crystallinity is hindered, which is generally attributed to the out-diffusion of hydrogen from the surface and the presence of impurities (dopants).We observe that the parameter window for the treatment time for p-layers is smaller compared to n-layers. Moreover we observe that for high temperatures, the nucleation of p-layers is more adversely affected than for n-layers. Thin, doped layers have been structurally, optically and electrically characterized. The best n-layer made at 400°C, with a thickness of only 31 nm, had an activation energy of 0.056 eV and a dark conductivity of 2.7 S/cm, while the best p-layer made at 350°C, with a thickness of 29 nm, had an activation energy of 0.11 V and a dark conductivity of 0.1 S/cm. The suitability of these high temperature n-layers has been demonstrated in an n-i-p microcrystalline silicon solar cell with an unoptimized μc-Si:H i-layer deposited at 250°C and without buffer. The Voc of the cell is 0.48 V and the fill factor is 70 %.


2020 ◽  
Vol 2020 (11) ◽  
pp. 1292-1299
Author(s):  
I. M. Razumovskii ◽  
V. I. Razumovskiy ◽  
I. A. Logachev ◽  
A. O. Rodin ◽  
M. I. Razumovsky

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


2020 ◽  
Vol 92 (2) ◽  
pp. 20601
Author(s):  
Abdelaziz Labrag ◽  
Mustapha Bghour ◽  
Ahmed Abou El Hassan ◽  
Habiba El Hamidi ◽  
Ahmed Taoufik ◽  
...  

It is reported in this paper on the thermally assisted flux flow in epitaxial YBa2Cu3O7-δ deposited by Laser ablation method on the SrTiO3 substrate. The resistivity measurements ρ (T, B) of the sample under various values of the magnetic field up to 14T in directions B∥ab-plane and B∥c-axis with a dc weak transport current density were investigated in order to determine the activation energy and then understand the vortex dynamic phenomena and therefore deduce the vortex phase diagram of this material. The apparent activation energy U0 (B) calculated using an Arrhenius relation. The measured results of the resistivity were then adjusted to the modified thermally assisted flux flow model in order to account for the temperature-field dependence of the activation energy U (T, B). The obtained values from the thermally assisted activation energy, exhibit a behavior similar to the one showed with the Arrhenius model, albeit larger than the apparent activation energy with ∼1.5 order on magnitude for both cases of the magnetic field directions. The vortex glass model was also used to obtain the vortex-glass transition temperature from the linear fitting of [d ln ρ/dT ] −1 plots. In the course of this work thanks to the resistivity measurements the upper critical magnetic field Hc2 (T), the irreversibility line Hirr (T) and the crossover field HCrossOver (T) were located. These three parameters allowed us to establish a phase diagram of the studied material where limits of each vortex phase are sketched in order to optimize its applicability as a practical high temperature superconductor used for diverse purposes.


2021 ◽  
pp. 129746
Author(s):  
A.A. Zaitsev ◽  
I. Konyashin ◽  
P.A. Loginov ◽  
E.A. Levashov ◽  
A.S. Orekhov

Sign in / Sign up

Export Citation Format

Share Document