Nucleation and growth of Al2O3/metal composites by oxidation of aluminum alloys

1991 ◽  
Vol 6 (9) ◽  
pp. 1964-1981 ◽  
Author(s):  
O. Salas ◽  
H. Ni ◽  
V. Jayaram ◽  
K.C. Vlach ◽  
C.G. Levi ◽  
...  

The nucleation and growth mechanisms during high temperature oxidation of liquid Al−3% Mg and Al−3% Mg−3% Si alloys were studied with the aim of enhancing our understanding of a new composite fabrication process. The typical oxidation sequence consists of an initial event of rapid but brief oxidation, followed by an incubation period of limited oxide growth after which bulk Al2O3/Al composite forms. A duplex oxide layer, MgO (upper) and MgAl2O4 (lower), forms on the alloy surface during initial oxidation and incubation. The spinel layer remains next to the liquid alloy during bulk oxide growth and is the eventual repository for most of the magnesium in the original alloy. Metal microchannels developed during incubation continuously supply alloy through the composite to the reaction interface. During the growth process, a layered structure exists at the upper extremity of the composite, consisting of MgO at the top surface, MgAl2O4 (probably discontinuous), Al alloy, and finally the bulk Al2O3 composite containing microchannels of the alloy. The bulk oxide growth mechanism appears to involve continuous formation and dissolution of the Mg-rich oxides at the surface, diffusion of oxygen through the underlying liquid metal, and epitaxial growth of Al2O3 on the existing composite body. The roles of Mg and Si in the composite growth process are discussed.

Author(s):  
J.A. Eades ◽  
E. Grünbaum

In the last decade and a half, thin film research, particularly research into problems associated with epitaxy, has developed from a simple empirical process of determining the conditions for epitaxy into a complex analytical and experimental study of the nucleation and growth process on the one hand and a technology of very great importance on the other. During this period the thin films group of the University of Chile has studied the epitaxy of metals on metal and insulating substrates. The development of the group, one of the first research groups in physics to be established in the country, has parallelled the increasing complexity of the field.The elaborate techniques and equipment now needed for research into thin films may be illustrated by considering the plant and facilities of this group as characteristic of a good system for the controlled deposition and study of thin films.


Author(s):  
J.Y. Lee

In the oxidation of metals and alloys, microstructural features at the atomic level play an important role in the nucleation and growth of the oxide, but little is known about the atomic mechanisms of high temperature oxidation. The present paper describes current progress on crystallographic aspects of aluminum oxidation. The 99.999% pure, polycrystalline aluminum was chemically polished and oxidized in 1 atm air at either 550°C or 600°C for times from 0.5 hr to 4 weeks. Cross-sectional specimens were prepared by forming a sandwich with epoxy, followed by mechanical polishing and then argon ion milling. High resolution images were recorded in a <110>oxide zone-axis orientation with a JE0L JEM 200CX microscope operated at 200 keV.


Author(s):  
Shou-kong Fan

Transmission and analytical electron microscopic studies of scale microstructures and microscopic marker experiments have been carried out in order to determine the transport mechanism in the oxidation of Ni-Al alloy. According to the classical theory, the oxidation of nickel takes place by transport of Ni cations across the scale forming new oxide at the scale/gas interface. Any markers deposited on the Ni surface are expected to remain at the scale/metal interface after oxidation. This investigation using TEM transverse section techniques and deposited microscopic markers shows a different result,which indicates that a considerable amount of oxygen was transported inward. This is the first time that such fine-scale markers have been coupled with high resolution characterization instruments such as TEM/STEM to provide detailed information about evolution of oxide scale microstructure.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 526
Author(s):  
Zhengyuan Li ◽  
Lijia Chen ◽  
Haoyu Zhang ◽  
Siyu Liu

The oxidation behavior and microstructural evolution of the nanostructure of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys prepared by spark plasma sintering were investigated by high-temperature oxidation experiments in air at 1200 °C for 100 h. The formation of Al2O3 scale was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) line scans. The oxidation rate of Fe-Cr-Al ODS alloys is lower than that of conventional Fe-Cr-Al alloys, and the oxide layer formed on the Fe-Cr-Al alloy appeared loose and cracked, whereas the oxide layer formed on the Fe-Cr-Al ODS alloys was adherent and flat. This is due to the high density of dispersed nano-oxides hindering the diffusion of Al element and the formation of vacancies caused by them. In addition, the nano-oxides could also adhere to the oxide layer. Besides, the microstructure of the Fe-Cr-Al ODS alloy had excellent stability during high-temperature oxidation.


1993 ◽  
Vol 8 (4) ◽  
pp. 734-740 ◽  
Author(s):  
M. Chen ◽  
S. Patu ◽  
J.N. Shen ◽  
C.X. Shi

Ni3Al samples were implanted with different doses of 150 keV Cr+ ions to modify the surface region. The high temperature oxidation behavior was tested. The surface layer structure was investigated by AES, TEM, XRD, and optical microscope before and after the test. The experimental results show that chromium ions turn a small amount of ordered superlattice Ni3Al phase into a disordered Ni–Al–Cr phase. Also there is a bcc chromium phase in the implanted sample. Implanted Ni3Al alloy has better oxidation resistance than the unimplanted one at 900 °C. The oxide layer is of a multilayer structure after 50 h oxidation, composed of a NiO inner layer, Cr2O3, spinel NiAl2O4 intermediate layers, and an α–Al2O3 external layer at the oxide/air interface. The α-Al2O3 and Cr2O3 are independent scale-like layers. The two protective layers improve the oxidation resistance significantly. The effects of implanted elements and possible reaction mechanisms are discussed.


2018 ◽  
Vol 115 (5) ◽  
pp. 512 ◽  
Author(s):  
Abdulaziz Alhussein ◽  
Piotr R. Scheller ◽  
Wen Yang

The interaction between molten Fe-Al alloy containing 5.1 wt.% aluminium and MgO-SiO2-based refractory was investigated. In high-frequency induction furnace at 1550 °C refractory samples were immersed in liquid alloy for 1 min, 2 min, 10 min, 20 min, 30 min and 60 min. Scanning electron microscope was employed to investigate phases at the interface and inclusions in the Fe-Al alloy. Forsterite phase in refractory was transformed to MgO·Al2O3 spinel, owing to the reduction of iron oxide and silica in forsterite by aluminium in the Fe-Al alloy at the interface. The interface layer separated locally from the refractory material and formed cluster and single particles in the Fe-Al alloy. In view on the reaction rate, the disintegration of the refractory material increased the reaction area but interfered with increasing thickness of the spinel layer. The dissolution rate of silica into the molten alloy decreased with increasing the reaction time because of the slowed down transport of aluminium diffusing through increasing spinel layer became the rate controlling step.


Sign in / Sign up

Export Citation Format

Share Document