Copper-alumina materials made by infiltration in boehmite

1995 ◽  
Vol 10 (9) ◽  
pp. 2271-2276 ◽  
Author(s):  
V. Pierre ◽  
D. Pierre ◽  
A.C. Pierre

New materials were made by infiltration of sol-gel boehmite thin films with copper acetate. The structure and phase transformation of these materials during heat treatment were studied. It was found that infiltration in the boehmite state did not end up in the same material as direct infiltration in the θ-alumina derived from boehmite, even after both types of materials were heat-treated at 900 °C. Infiltration in boehmite makes it possible to synthesize sandwich structures comprised of alternate layers of CuO and of γ-alumina.

2007 ◽  
Vol 336-338 ◽  
pp. 2316-2317
Author(s):  
Le Fu Mei ◽  
Kai Ming Liang ◽  
Shu Ming Wang ◽  
Feng Zhou

ZrO2-TiO2 thin films, which were heat-treated with an applied electric field, were prepared by sol-gel method. The phase transformation behavior of ZrO2-TiO2 composite thin films was studied by DTA, XRD, SEM and Raman spectroscopy. In an electric field, the phase transformation temperature of amorphous phase to anatase and that of anatase to rutile are all decreased.


1992 ◽  
Vol 7 (11) ◽  
pp. 3065-3071 ◽  
Author(s):  
Peir-Yung Chu ◽  
Isabelle Campion ◽  
Relva C. Buchanan

Phase transformation and preferred orientation in ZrO2 thin films, deposited on Si(111) and Si(100) substrates, and prepared by heat treatment from carboxylate solution precursors were investigated. The deposited films were amorphous below 450 °C, transforming gradually to the tetragonal and monoclinic phases on heating. The monoclinic phase developed from the tetragonal phase displacively, and exhibited a strong (111) preferred orientation at temperature as low as 550 °C. The degree of preferred orientation and the tetragonal-to-monoclinic phase transformation were controlled by heating rate, soak temperature, and time. Interfacial diffusion into the film from the Si substrate was negligible at 700 °C and became significant only at 900 °C, but for films thicker than 0.5 μm, overall preferred orientation exceeded 90%.


Author(s):  
Abhijit Biswas ◽  
Suman Kalyan Das ◽  
Prasanta Sahoo

The microstructural changes of electroless Ni–P–Cu coating at various heat-treatment conditions are investigated to understand its implications on the tribological behavior of the coating. Coatings are heat-treated at temperatures ranging between 200°C and 800 °C and for 1–4 h duration. Ni–P–Cu coatings exhibit two-phase transformations in the temperature range of 350–450 °C and the resulting microstructural changes are found to significantly affect their thermal stability and tribological attributes. Hardness of the coating doubles when heat-treated at 452 °C, due to the formation of harder Ni3P phase and crystalline NiCu. Better friction and wear performance are also noted upon heat treatment of the coating at the phase transformation regime, particularly at 400 °C. Wear mechanism is characterized by a mixed adhesive cum abrasive wear phenomena. Heat treatment at higher temperature (600 °C and above) and longer duration (4 h) results in grain coarsening phenomenon, which negatively influences the hardness and tribological characteristics of the coating. Besides, diffusion of iron from the ferrous substrate as well as greater oxide formation are noticed when the coating is heat-treated at higher temperatures and for longer durations (4 h).


2007 ◽  
Vol 336-338 ◽  
pp. 505-508
Author(s):  
Cheol Jin Kim ◽  
In Sup Ahn ◽  
Kwon Koo Cho ◽  
Sung Gap Lee ◽  
Jun Ki Chung

LiNiO2 thin films for the application of cathode of the rechargeable battery were fabricated by Li ion diffusion on the surface oxidized NiO layer. Bi-axially textured Ni-tapes with 50 ~ 80 μm thickness were fabricated using cold rolling and annealing of Ni-rod prepared by cold isostatic pressing of Ni powder. Surface oxidation of Ni-tapes were conducted using tube furnace or line-focused infrared heater at 700 °C for 150 sec in flowing oxygen atmosphere, resulted in NiO layer with thickness of 400 and 800 μm, respectively. After Li was deposited on the NiO layer by thermal evaporation, LiNiO2 was formed by Li diffusion through the NiO layer during subsequent heat treatment using IR heater with various heat treatment conditions. IR-heating resulted in the smoother surface and finer grain size of NiO and LiNiO2 layer compared to the tube-furnace heating. The average grain size of LiNiO2 layer was 0.5~1 μm, which is much smaller than that of sol-gel processed LiNiO2. The reacted LiNiO2 region showed homogeneous composition throughout the thickness and did not show any noticeable defects frequently found in the solid state reacted LiNiO2, but crack and delamination between the reacted LiNiO2 and Ni occurred as the reaction time increased above 4hrs.


2016 ◽  
Vol 725 ◽  
pp. 647-652 ◽  
Author(s):  
Yusuke Yanagisawa ◽  
Yasuhiro Kishi ◽  
Katsuhiko Sasaki

The residual stress distributions of the forgings after both water-cooling and air-cooling were measured experimentally. The residual stress occurring during the heat-treatment was also simulated considering the phase transformation and the transformation plasticity. A comparison of the experiments with the simulations showed a good agreement. These results shows that the transformation plastic strain plays an important role in the heat treatment of large forged shafts.


2011 ◽  
Vol 44 (3) ◽  
pp. 550-554 ◽  
Author(s):  
Jianjun Tian ◽  
Hongmei Deng ◽  
Lin Sun ◽  
Hui Kong ◽  
Pingxiong Yang ◽  
...  

Author(s):  
Raphael Edem Agbenyeke ◽  
Soomin Song ◽  
Heenang Choi ◽  
Bo Keun Park ◽  
Jae Ho Yun ◽  
...  

2010 ◽  
Vol 105-106 ◽  
pp. 123-125 ◽  
Author(s):  
Yong Li ◽  
Qi Hong Wei ◽  
Ling Li ◽  
Chong Hai Wang ◽  
Xiao Li Zhang ◽  
...  

In this paper, negative thermal expansion coefficient eucryptite powders were prepared by sol-gel method using silica-sol as starting material. The raw blocks were obtained by dry pressing process after the powder was synthesized, and then the raw blocks were heat-treated at 600º, 1150º, 1280º, 1380º, 1420º and 1450°C, respectively. Variations of density, porosity and thermal expansion coefficient at different heat treatment temperatures were investigated. Phase transformation and fracture surface morphology of eucryptite heat-treated at different temperatures, respectively, were observed by XRD and SEM. The results indicate that, with the increasing heat- treatment temperature, the grain size and the bending strength increased, porosity decreased, thermal expansion coefficient decreased continuously. Negative thermal expansion coefficient of -5.3162×10-6~-7.4413×10-6 (0~800°C) was obtained. But when the heat-treatment temperature was more than 1420°C, porosity began to increase, bending strength began to decrease, which were the symbols of over-burning, while the main crystal phase didn’t change.


2012 ◽  
Vol 35 (5) ◽  
pp. 745-750 ◽  
Author(s):  
S WIEGAND ◽  
S FLEGE ◽  
O BAAKE ◽  
W ENSINGER

1994 ◽  
Vol 9 (2) ◽  
pp. 420-425 ◽  
Author(s):  
Dae Sung Yoon ◽  
Chang Jung Kim ◽  
Joon Sung Lee ◽  
Won Jong Lee ◽  
Kwangsoo No

Epitaxial lead lanthanum zirconate titanate [PLZT(9/50/50)] thin films were fabricated on various single crystal substrates using the spin coating of metallo-organic solutions. The films were heat-treated at 700 °C for 1 h using the direct insertion method. The films were epitaxially grown with (100), (100), and (110) being parallel to the SrTiO3(100), the MgO(100), and the sapphire (0112) substrates, respectively. The epitaxy of the films was investigated using x-ray diffraction, pole figures, rocking curves, and scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document