The electrical properties of La2CuO4/ZnO heterocontacts at different relative humidities

1995 ◽  
Vol 10 (9) ◽  
pp. 2286-2294 ◽  
Author(s):  
Enrico Traversa ◽  
Andrea Bearzotti ◽  
Masaru Miyayama ◽  
Hiroaki Yanagida

The humidity-sensing electrical properties of heterocontacts betweenp-type La2CuO4andn-type ZnO semiconductors, and of the single oxides, as a comparison, were studied. The heterocontacts was prepared by mechanically pressing sintered disks of the two oxides. The electrical characterization of the heterocontacts was carried out using dc and ac measurements at various relative humidity (RH) values, in order to evaluate the sensing mechanisms and the electrical properties of thesep-njunctions. Their humidity sensitivity was explained in terms of the variation of the barrier height at thep-njunctions, due to the saturation of the original interface states by physisorbed water, which leads to the release of trapped electrons, resulting in an increase in the forward current. The higher the number of interface states, the higher the RH-sensitivity of the heterocontacts. Electrochemical impedance spectroscopy (EIS) measurements showed, at 90% RH, a distribution of capacitances with different relaxation times, which may be caused by the electrolysis of water molecules atp-njunction sites. For their use as humidity sensors, they showed a response of 4 orders of magnitude in the whole RH range tested, and a fast response time. The response of the heterocontacts was bias-dependent, tunable by externally applied electric field. They also have stand-by capability and a self-cleaning mechanism, which allow them to be described as intelligent materials.

2012 ◽  
Vol 717-720 ◽  
pp. 641-644
Author(s):  
Travis J. Anderson ◽  
Karl D. Hobart ◽  
Luke O. Nyakiti ◽  
Virginia D. Wheeler ◽  
Rachael L. Myers-Ward ◽  
...  

Graphene, a 2D material, has motivated significant research in the study of its in-plane charge carrier transport in order to understand and exploit its unique physical and electrical properties. The vertical graphene-semiconductor system, however, also presents opportunities for unique devices, yet there have been few attempts to understand the properties of carrier transport through the graphene sheet into an underlying substrate. In this work, we investigate the epitaxial graphene/4H-SiC system, studying both p and n-type SiC substrates with varying doping levels in order to better understand this vertical heterojunction.


1982 ◽  
Vol 13 ◽  
Author(s):  
L. Baufay ◽  
A. Pigeolet ◽  
R. Andrew ◽  
L.D. Laude

ABSTRACTOptical and electrical characterization of CdTe synthetized by laser irradiationofamultilayer film of alternately Cd and Te is achieved. Optical absorption measurements evidence the good quality of these films and show that they have behaviour comparable to the single crystal. The influence of the irradiation conditions on the electrical properties of such CdTe films is discussed; they are compared to single crystal from the point of view of resistivity. It is shown that it is possible to prepare by this means samples devoid of impurity states in the middle of the forbidden gap. Finally, the ohmicity of Au, Al, Cr, ITO and non irradiated Cd/Te sandwich contacts is tested.


MRS Bulletin ◽  
2002 ◽  
Vol 27 (3) ◽  
pp. 222-225 ◽  
Author(s):  
R. Degraeve ◽  
E. Cartier ◽  
T. Kauerauf ◽  
R. Carter ◽  
L. Pantisano ◽  
...  

AbstractThe continual scaling of complementary metal oxide semiconductor (CMOS) technologies has pushed the Si-SiO2 system to its very limits and has led to the consideration of a number of alternative high-ĸ gate dielectric materials. In the end, it will be the electrical properties of the new Si/high-ĸ system that will determine its usefulness in future CMOS generations. For this reason, the study of the electrical properties of high-ĸ gate insulators is crucial. We present an overview of some of the electrical characterization techniques and reliability tests used to evaluate possible high-ĸ gate materials. Most of these techniques are well known from the characterization of SiO2 layers, but there are some additional complications, such as the presence of several different layers within one gate stack or the use of different gate electrode materials. These make the interpretation and comparison of experimental results more troublesome.


2006 ◽  
Vol 518 ◽  
pp. 235-240 ◽  
Author(s):  
M. Žunić ◽  
Z. Branković ◽  
G. Branković ◽  
D. Poleti

The effect of Co, Cr and Nb on the electrical properties of the grain boundaries of SnO2-based varistors was investigated. The powders were prepared by the method of evaporation and decomposition of solutions and suspensions. Varistor samples were obtained by uniaxial pressing followed by sintering at 1300 °C for 1h. The electrical properties of the grain-boundary region, such as resistance (R) and capacitance (C), were determined using ac impedance spectroscopy in the 27-330 °C temperature interval. Activation energies for conduction (EA) were calculated from the Arrhenius equation. The non-linear coefficients (α) and the breakdown electric fields (Eb) of the samples were determined from the current-voltage characteristics. The potential barrier height (Φb) was calculated using the Schottky-type conducting model. After a comparison of the characteristic parameters for different varistor compositions it was found that the Cr/Nb ratio has a crucial influence on the grain-boundary properties in SnO2 varistors.


2019 ◽  
Vol 69 (12) ◽  
pp. 3494-3499
Author(s):  
Veronica Manescu (Paltanea) ◽  
Gheorghe Paltanea ◽  
Iosif Vasile Nemoianu ◽  
Dorina Popovici ◽  
Radu Mircea Ciuceanu

The paper is devoted to the electrochemical anodizing method for TiO2 nanotube layers generation on titanium surface. It is commonly accepted that parameters like anodizing time, electrical voltage and the actual type of electrolyte are important factors in what concerns the TiO2 nanotube diameters and their surface density. The present study considers self-organized titanium nanotubes resulted from an aqueous solution of 49.5 wt% H2O, 49.5 wt% glycerol, 1 wt% HF used as the electrolyte. The actual anodizing duration was 8 hours at an applied voltage of 25 V. Through the technique of scanning electron microscopy, it is shown that the resulted tubular nanostructure is one-dimensional having an approximate inner and outer diameters of 90 nm and 110 nm, respectively. From an electrical point of view, the analysed materials properties were determined using electrochemical and dielectric impedance spectroscopy tests.


2008 ◽  
Vol 8 (12) ◽  
pp. 6523-6527
Author(s):  
D. Mendoza ◽  
P. Santiago

In this work we present the electrical characterization of carbon nanotubes synthesized by a thermal chemical deposition method, using carbon disulfide as the precursor of carbon and iron as the catalyst. We found a broad maximum in the electrical resistance as a function of temperature between 275–300 K and a hysteretic behavior when the measurements were made in a humid environment. We propose that the water molecules act as traps for charge carriers, and the overall behavior of the observed phenomenon is discussed in terms of the confinement of water inside the carbon nanotubes.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 899 ◽  
Author(s):  
Elisabeth Kostal ◽  
Stephan Kasemann ◽  
Can Dincer ◽  
Stefan Partel

We present recent results of the electrochemical impedance spectroscopy (EIS) measurements for interdigitated electrode arrays (IDAs) ranging from several micrometers down to hundreds of nanometers. Simulations have shown that the electric field strength between the electrodes scales with the gap size. Therefore, electrodes of varying gap sizes were fabricated and functionalized with ssDNA to empirically validate these findings. The results have shown that the impedimetric response strongly correlates with the width of the electrode fingers: the smaller the electrode gap, the larger the impedance increase.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1434 ◽  
Author(s):  
Sarath Kumara ◽  
Xiangdong Xu ◽  
Thomas Hammarström ◽  
Yingwei Ouyang ◽  
Amir Masoud Pourrahimi ◽  
...  

To design reliable high voltage cables, clean materials with superior insulating properties capable of operating at high electric field levels at elevated temperatures are required. This study aims at the electrical characterization of a byproduct-free crosslinked copolymer blend, which is seen as a promising alternative to conventional peroxide crosslinked polyethylene currently used for high voltage direct current cable insulation. The characterization entails direct current (DC) conductivity, dielectric response and surface potential decay measurements at different temperatures and electric field levels. In order to quantify the insulating performance of the new material, the electrical properties of the copolymer blend are compared with those of two reference materials; i.e., low-density polyethylene (LDPE) and peroxide crosslinked polyethylene (XLPE). It is found that, for electric fields of 10–50 kV/mm and temperatures varying from 30 °C to 70 °C, the DC conductivity of the copolymer blend is in the range of 10−17–10−13 S/m, which is close to the conductivity of crosslinked polyethylene. Furthermore, the loss tangent of the copolymer blend is about three to four times lower than that of crosslinked polyethylene and its magnitude is on the level of 0.01 at 50 °C and 0.12 at 70 °C (measured at 0.1 mHz and 6.66 kV/mm). The apparent conductivity and trap density distributions deduced from surface potential decay measurements also confirmed that the new material has electrical properties at least as good as currently used insulation materials based on XLPE (not byproduct-free). Thus, the proposed byproduct-free crosslinked copolymer blend has a high potential as a prospective insulation medium for extruded high voltage DC cables.


Sign in / Sign up

Export Citation Format

Share Document