Ferroelectric Properties of Sol-Gel Derived Ca1-xSrxBi4Ti4O15 Thin Films

2008 ◽  
Vol 368-372 ◽  
pp. 100-102 ◽  
Author(s):  
Su Hua Fan ◽  
Jing Xu ◽  
Guang Da Hu ◽  
Bo He ◽  
Feng Qing Zhang

Ca1-xSrxBi4Ti4O15 thin films were fabricated by sol-gel method on Pt(100)/Ti/SiO2/Si substrates. Influence of Sr content on the microstructure and ferroelectric properties of Ca1-xSrxBi4Ti4O15 thin films were systematically studied. The results indicate that Ca0.4Sr0.6Bi4Ti4O15 thin film has better ferroelectric properties with remanent polarization (2Pr) of 29.1+C/cm2, coercive field (2Ec) of 220 kV/cm. Furthermore, the film has good fatigue resistance. The better ferroelectric properties of Ca0.4Sr0.6Bi4Ti4O15 thin film originate from the relatively high concentration of a-axis oriented grains.

2005 ◽  
Vol 902 ◽  
Author(s):  
Sushil Kumar Singh ◽  
Hiroshi Ishiwara

AbstractMn-doped Bi3.25La0.75Ti3O12 (BLT) thin films were fabricated by depositing sol-gel solutions on Pt/Ti/SiO2/Si <100> substrates. The surface morphology and ferroelectric properties of Mn-doped BLT films depend upon the orientation of the films. Small amount of Mn-doping in BLT films influences the ferroelectric properties of the films, that is, it enhances the remanent polarization and reduces the coercive field. The 1% Mn-doped BLT films show enhanced remanent polarization and reduced the coercive field by about 22%. To the contrary, Mn-doping more than 1% decreases polarization gradually. Mn-doping significantly improves the fatigue resistance of BLT films. The reduced polarization in the 3.3% Mn-doped thin film recovers during switching cycles higher than 5 × 105. Under high switching field, the probability of field-assisted unpinning of domains is expected to be high and this may be the main cause for increase in polarization after 5 × 105 in the 3.3% Mn-doped BLT film.


2007 ◽  
Vol 21 (18n19) ◽  
pp. 3404-3411
Author(s):  
M. C. KAO ◽  
H. Z. CHEN ◽  
S. L. YOUNG ◽  
C. C. LIN ◽  
C. C. YU

LiTaO 3 thin films were deposited on Pt / Ti / SiO 2/ Si substrates by means of a sol-gel spin-coating technology and rapid thermal annealing (RTA). The influence of various annealing treatments on the characteristics of the thin films were studied by varying the single-annealed-layer thickness (50 ~ 200 nm ) and heating temperatures (500 ~ 800° C ) of the samples. Experimental results reveal that the single-annealed-layer strongly influences grain size, dielectricity and ferroelectricity of LiTaO 3 thin films. The grain size of LiTaO 3 thin film decreases slightly with increasing thickness of the single-annealed-layer, and highly c-axis orientated LiTaO 3 films can be obtained for a single-annealed-layer of 50 nm. When the thickness of the single-annealed-layer was increased from 50 to 200 nm, the relative dielectric constant of LiTaO 3 thin film decreased from 65 to 35, but the dielectric loss factor (tanδ) was increased. The LiTaO 3 films with the single-annealed-layer of 50 nm showed excellent ferroelectric properties in terms of a remanent polarization ( P r) of 12.3 μ C /cm2 (Ec ∼ 60 kV/cm), and a low current density of 5.2×l0-8 A /cm2 at 20 kV/cm.


2002 ◽  
Vol 718 ◽  
Author(s):  
Ching-Chich Leu ◽  
Chao-Hsin Chien ◽  
Ming-Jui Yang ◽  
Ming-Che Yang ◽  
Tiao-Yuan Huang ◽  
...  

AbstractThe effects of a seeding layer, which was deposited on Pt/TiO2/SiO2/Si substrates using magnetron sputtering, on the characteristics of sol-gel-deposited strontium-bismuth-tantalate (SBT) thin films are investigated. The seeding layer serves as nucleation sites so homogeneous crystalline SBT films of bismuth-layered structure (BLS) with fine grains are successfully obtained by 750°C rapid thermal annealing in O2 ambient. The remanent polarization (2Pr) improves from 12.1 to 18.8 μC/cm2 with the addition of the seeding layer. In addition, the seeding layer also results in a lower nucleation temperature, allowing the use of 700°C annealing for 10 min to grow SBT films that are fully crystallized with BLS phase and shows good ferroelectric properties. Finally, crystallinity and microstructures of SBT films are found to be strongly dependent on the thickness of the seeding layer. Optimum Ta-seeded SBT thin film crystallized at 700°C for 10min depicts a higher 2Pr value (12.9 μC/cm2 (@5V) than that of the un-seeded films crystallized at 750°C for 1min.


2007 ◽  
Vol 336-338 ◽  
pp. 146-148
Author(s):  
Y.H. Sun ◽  
X.B. Liu ◽  
Min Chen ◽  
J. Liu ◽  
S. Chen ◽  
...  

Nd-doped bismuth titanate Bi4-xNdxTi3O12 (BNT) thin films were fabricated on Pt/Ti/SiO2/Si substrates by sol-gel method and spin-coating technique. The structures and the ferroelectric properties of the films were investigated. Nd doping leads to a marked improvement in the remanent polarization (Pr) and the coercive field (Ec). At the applied electric field of 260 kV/cm, Pr and Ec of the BNT film with x=0.5 annealed at 650oC are 19 μC/cm2 and 135 kV/cm, respectively. Moreover, the BNT film with x=0.5 showed a fatiguefree behavior up to 3×1010 read/write cycles.


2007 ◽  
Vol 14 (03) ◽  
pp. 435-438
Author(s):  
PILONG WANG ◽  
GUANGDA HU ◽  
YANXIA DING ◽  
SUHUA FAN

SrBi 4 Ti 4 O 15 ( SBTi ) thin films were prepared on (100)- and (110)-oriented LaNiO 3( LNO ) electrodes by a metalorgranic decomposition (MOD) technique at an annealing temperature of 650°C. c-axis-oriented SBTi thin film with volume fraction of 0.89 can be formed on a (100)-oriented LNO film due to the epitaxial relationship between c-axis-oriented SBTi and LNO (100). In contrast, SBTi film deposited on LNO (110) shows random orientations with strong (119) and (200) peaks. The remanent polarization (Pr) and coercive field (Ec) of the random oriented SBTi film were 18.1 μC/cm2 and 70 kV/cm, respectively. This suggests that (110)-oriented LNO electrode is a better choice for obtaining SBTi films with higher volume fraction of a(b)-axis-orientated grains.


2011 ◽  
Vol 197-198 ◽  
pp. 1781-1784
Author(s):  
Hua Wang ◽  
Jian Li ◽  
Ji Wen Xu ◽  
Ling Yang ◽  
Shang Ju Zhou

Intergrowth-superlattice-structured SrBi4Ti4O15–Bi4Ti3O12(SBT–BIT) films prepared on p-Si substrates by sol-gel processing. Synthesized SBT–BIT films exhibit good ferroelectric properties. As the annealing temperature increases from 600°C to 700°C, the remanent polarization Prof SBT–BIT films increases, while the coercive electric field Ecdecreases. SBT–BIT films annealed at 700°C have a Prvalue of 18.9µC/cm2which is higher than that of SBT (16.8µC/cm2) and BIT (14.6µC/cm2), and have the lowest Ecof 142 kV/cm which is almost the same as that of SBT and BIT. The C-V curves of Ag/SBT-BIT/p-Si heterostructures show the clockwise hysteresis loops which reveal the memory effect due to the polarization. The memory window in C-V curve of Ag/SBT-BIT/p-Si is larger than that of Ag/SBT/p-Si heterostructure or Ag/BIT/p-Si heterostructure.


2003 ◽  
Vol 784 ◽  
Author(s):  
Hiroshi Uchida ◽  
Seiichiro Koda ◽  
Hirofumi Matsuda ◽  
Takashi Iijima ◽  
Takayuki Watanabe ◽  
...  

ABSTRACTTi-site substitution using the higher-valent cation was performed on ferroelectric thin films of neodymium-substituted bismuth titanate, (Bi,Nd)4Ti3O12(BNT), in order to improve its ferroelectric properties by compensating the space charge in BIT-based crystal. Ti-site-substituted BNT films, (Bi3.50Nd0.50)1-(x/12)(Ti3.00-xVx)O15(x= 0 ∼ 0.09), were fabricated on (111)Pt/Ti/ SiO2/(100)Si substrates using a chemical solution deposition (CSD) technique. V5+-substitution enhanced the remanent polarization of BNT film without change in the coercive field. V5+-substitution also exhibited the possibilities for improving the endurance against leakage current and fatigue degradation.


2004 ◽  
Vol 19 (6) ◽  
pp. 1638-1642
Author(s):  
S.T. Zhang ◽  
J.P. Li ◽  
Y.F. Chen ◽  
Z.G. Liu ◽  
N.B. Ming

Polycrystalline (Pb0.75La0.25)TiO3 (PLT25) thin films have been fabricated on Pt/Ti/SiO2/Si substrates by pulsed laser deposition. The room-temperature structures and dielectric properties are studied by x-ray diffraction, scanning electron microscopy, and HP4294A impedance/phase analyzer. The temperature-dependent ferroelectric properties are systematically investigated by using a RT66A ferroelectric tester combined with a temperature-controllable vacuum chamber. For well-saturated hysteresis loops, with the temperature decrease from 295 to 97 K, the coercive field (Ec) and remanent polarization (Pr) increase and the saturated polarization (Ps) is almost temperature-independent. However, this is not the case for the unsaturated hysteresis loops. Temperature-dependent fatigue-resistance of the PLT25 films is also experimentally established: after 2.22 × 109 switching cycles, the nonvolatile polarizationdecreases 38% when measured at room-temperature and it decreases 15% at 97 K. The nature and population of point defects and their effects on the subtle variations of the Ec, Ps, Pr, and fatigue-resistance against temperature are discussed in detail.


2010 ◽  
Vol 434-435 ◽  
pp. 296-299
Author(s):  
Jian Ping Yang ◽  
Xing Ao Li ◽  
An You Zuo ◽  
Zuo Bin Yuan ◽  
Zhu Lin Weng

Bi4Ti3O12 (BTO) and Bi3.25La0.75Ti3O12 (BLT) ferroelectric thin films were deposited on Pt/Si substrates by RF magnetron sputtering with Bi4Ti3O12 (BTO) and Bi3.25La0.75Ti3O12 (BLT) targets with 50-mm diameter and 5-mm thickness. The microstructure and ferroelectric properties of thin films were investigated. The grain growth behavior and ferroelectric properties such as remanent polarization were different in these two kinds of film, the effects of La doping in the BLT thin film were very obvious.


2008 ◽  
Vol 368-372 ◽  
pp. 91-94
Author(s):  
S. Chen ◽  
A.H. Cai ◽  
X.A. Mei ◽  
Chong Qing Huang ◽  
W.K. An ◽  
...  

Sm-doped bismuth titanate and random oriented Bi4-xCexTi3O12 (BCT) thin films were fabricated on Pt/Ti/SiO2/Si substrates rf magnetron sputtering technique. The structures and the ferroelectric properties of the films were investigated. Ce doping leads to a marked improvement in the remanent polarization (Pr) and the coercive field (Ec). At the applied electric field of 100 kV/cm, Pr and Ec of the BCT (x = 0.8) film annealed at 650 oC are 20.5 μC/cm2 and 60 KV/cm, respectively. However, after 3 × 1010 switching cycles, 20% degradation of 2Pr is observed in the film.


Sign in / Sign up

Export Citation Format

Share Document