Hardness obtained from conical indentations with various cone angles

2000 ◽  
Vol 15 (12) ◽  
pp. 2830-2835 ◽  
Author(s):  
Yang-Tse Cheng ◽  
Zhiyong Li

The relationship between hardness and cone angle of conical indenters was studied using finite element analysis for elastic–plastic solids with work-hardening. Comparisons were made between the present simulation results, slip line theory, and experimental results. Tabor's concept of representative strain based on indentation experiments in metals (The Hardness of Metals, Oxford, 1951) was shown to be applicable to a wide range of materials. The relative size of plastic zone with respect to the contact radius was found to influence the variation of hardness with indenter cone angle. The method proposed by Atkins and Tabor [J. Mech. Phys. Solids, 13, 149 (1965)] for constructing stress-strain curves using representative strains was also examined, and the conditions under which the method is valid were obtained.

2019 ◽  
Vol 895 ◽  
pp. 102-108
Author(s):  
Harshavardhan Kulkarni ◽  
D. Saravana Bavan ◽  
M.S. Rajagopal

The work is focussed on measuring model parameters of a piezoelectric bending energy harvester cantilever beam with sputter coated technique using finite element analysis. The beam was studied for a wide range of frequencies of about 100-1200Hz. The finite element simulation results confirm that the vibrations in the above mentioned frequency range can be effectively utilised to generate energy. Design of electrometrical vibration energy harvester was carried out with literature survey and the effect was analysed for the given length of beam to the voltage produced by the harvester. The Electromagnetic analysis induced voltage is validated with the help of commercial finite element software ANSYS. The simulation results revealed that the effect of sputter coating on the beam will increase the power generation.


2015 ◽  
Vol 105 (01-02) ◽  
pp. 41-46
Author(s):  
C. Birenbaum ◽  
U. Heisel ◽  
S. Weiland

In Kreissägeblättern werden zur Verminderung von Schwingungen und zum Ausgleich thermischer Dehnungen sogenannte Dehnungs- und Dämpfungsschlitze eingebracht. Die Wirkungsweise der Schlitze auf die dynamischen Eigenschaften besteht einerseits in der Dämpfungswirkung sowie andererseits in der Modifikation der Schwingungseigenformen. Um Wirkmechanismen und Optimierungsmöglichkeiten zu identifizieren, werden in den hier vorgestellten Untersuchungen mithilfe der Finiten-Elemente-Methode (FEM) Analysen von Kreisscheiben mit einfachen Schlitzkonfigurationen durchgeführt. Hierdurch sollen Zusammenhänge einzelner Schlitzparameter mit den statischen und dynamischen Eigenschaften von Kreissägeblättern aufgezeigt werden. Zur Validierung des entwickelten Simulationsmodells dienen analytische Berechnungen.   To reduce vibrations and adjust for thermal expansion, so-called damping slots and expansion slots are applied to circular saw blades. The slots affect the dynamic behavior of the saw blades by damping the vibration and altering the characteristic modes and frequencies. An FE(Finite Element) analysis of annular plates with simple arrangements of damping and expansion slots is performed to identify the mechanisms and improvement opportunities. This allows determining the relationship between slot parameters and the static and dynamic qualities of circular saw blades. The developed simulation models are validated using an analytical approach.


2014 ◽  
Vol 633-634 ◽  
pp. 693-698
Author(s):  
Long Xin ◽  
Shi Chao Cui ◽  
Qi Lin Shu

In this paper, the ram of boring and milling machining center is taken as the research object. A new method that hydraulic pull rods compensation is proposed to solve the problem of deformation compensation of long stroke ram of boring and milling machining center. Firstly, the method of finite element analysis is used to get the laws of ram deformation and the relationship curve between the ram deformation and the stroke of ram. Secondly, the preliminary calculation value of pull rods compensation force is derived based on the theoretical analysis of material mechanics. The relationship curve between compensation force and the stroke of ram is obtained by finite element analysis and polynomial least squares method. Finally, the analyzed results are as follows: the laws of ram deformation distribution is accurately predicted by the used method, the deflection error of the ram is well controlled,and the machining precision is significantly improved.


Author(s):  
Md Mohiuddin ◽  
Asma Akther ◽  
Eun Byul Jo ◽  
Hyun Chan Kim ◽  
Jaehwan Kim

The present study investigates a film actuator made with dielectric cellulose acetate films separated by narrow spacers as a means of electrostatic actuation for potential haptic application. Fabrication process for the actuator is explained along with experiments conducted over a wide frequency range of actuation frequency. A valid finite element simulation of the actuator is made on the quarter section of the actuator by using full 3D finite elements. Vibration characteristics such as fundamental natural frequency, mode shape and output velocity in the frequency range for haptic feeling generation are obtained from the finite element analysis and compared with the experimental results. Experimental results demonstrate that the finite element model is practical and effective enough in predicting the vibration characteristics of the actuator for haptic application. The film actuator shows many promising properties like high transparency, wide range of actuation frequency and high vibration velocity for instance.


2011 ◽  
Vol 143-144 ◽  
pp. 437-442
Author(s):  
Bao Hong Tong ◽  
Yin Liu ◽  
Xiao Qian Sun ◽  
Xin Ming Cheng

A dynamic finite element analysis model for cylindrical roller bearing is developed, and the complex stress distribution and dynamic contacting nature of the bearing are investigated carefully based on ANSYS/LS-DYNA. Numerical simulation results show that the stress would be bigger when the element contacting with the inner or outer ring than at other times, and the biggest stress would appear near the area that roller contacting with the inner ring. Phenomenon of stress concentration on the roller is found to be very obvious during the operating process of the bearing system. The stress distributions of different elements are uneven on the same side surface of roller in its axis direction. Numerical simulation results can give useful references for the design and analysis of rolling bearing.


2014 ◽  
Vol 609-610 ◽  
pp. 849-855
Author(s):  
Wen Rui Ma ◽  
Guang He

Under launch impact load, LIGA nickel that manufacturing MEMS fuze safety and arming (S&A) device will have obvious strain rate effect. By using finite element analysis software ANSYS/LS-DYNA, simulation models of a small-caliber ammunition MEMS fuze setback S&A device with strain rate effect and without strain rate effect were respectively established. The results of the two simulation modules were quite different. Comparisons between experimental results and simulation results show that simulation results considering strain rate effect agree well with experimental results, which proves strain rate effect should not be ignored in the simulation of MEMS S&A device.


Jurnal METTEK ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Angga Restu Pahlawan ◽  
Rizal Hanifi ◽  
Aa Santosa

Frame adalah salah satu komponen yang sangat penting dalam sebuah kendaraan, yang berfungsi sebagai penopang penumpang, mesin, suspensi, sistem kelistrikan dan lain-lain. Melihat fungsi dari frame sangat penting, maka dalam merancang sebuah frame harus diperhitungkan dengan baik. Banyak sekali jenis pengujian yang sering dipakai dalam perancangan sebuah struktur frame, salah satunya adalah digunakannya metode komputasi dengan menggunakan metode Finite Element Analysis (FEA). Tujuan dari penelitian ini adalah untuk mengetahui distribusi tegangan, regangan, displacement, dan safety factor dari hasil pembebanan statis pada frame gokar. Struktur frame didesain dan dianalisis menggunakan software Solidworks 2016. Material yang digunakan frame adalah baja AISI 1045 hollow tube 273,2 mm, dengan menggunakan pembebanan pengendara sebesar 50 kg dan 70 kg. Hasil dari perhitungan manual didapatkan tegangan maksimum sebesar 4,735  107 N/m2, sedangkan dari simulasi didapatkan sebesar 4,516  107 N/m2. Regangan maksimum didapatkan dari perhitungan manual sebesar 2,310  10-4. Displacement maksimum didapatkan dari perhitungan manual sebesar 1,864  108 mm, sedangkan dari simulasi didapatkan sebesar 1,624  108 mm. Safety factor minimum didapatkan dari perhitungan manual sebesar 11,193, dan perhitungan simulasi didapatkan sebesar 11,736. The frame is one of the most important components in a vehicle, which functions as a support for passengers, engines, suspensions, electrical systems and others. Seeing the function of the frame is very important, so designing a frame must be taken into account well. There are many types of tests that are often used in the design of a frame structure, one of which is the use of computational methods using the Finite Element Analysis (FEA) method. The purpose of this study was to determine the distribution of stress, strain, displacement, and safety factor from the results of static loading on the kart frame. The frame structure was designed and analyzed using Solidworks 2016 software. The material used in the frame is steel AISI 1045 hollow tube 27  3,2 mm, using a rider load of 50 kg and 70 kg. The result of manual calculation shows that the maximum stress is 4,735  107 N/m2, while the simulation results are 4,516  107 N/m2. The maximum strain is obtained from manual calculation of 2,310  10-4. The maximum displacement is obtained from manual calculations of 1,864  108 mm, while the simulation results are 1,624  108 mm. The minimum safety factor obtained from manual calculation is 11,193, and the simulation calculation is 11,736.


Sign in / Sign up

Export Citation Format

Share Document