Effects of powder bed conditions on the liquid-phase sintering of Si3N4

2002 ◽  
Vol 17 (2) ◽  
pp. 465-472 ◽  
Author(s):  
Sea-Hoon Lee ◽  
Georg Rixecker ◽  
Fritz Aldinger ◽  
Sung-Churl Choi ◽  
Keun-Ho Auh

The effects of the active and passive protection mechanisms of powder beds on the sintering of Si3N4 were investigated. Shrinkage, density, and coloring behavior of sintered samples were analyzed using different compositions and packing conditions of powder beds based on BN and Si3N4 with different additives. Y2O3 additive in the powder bed influences the weight change and phase formation behavior of the samples, although it has a very low vapor pressure at the sintering temperature. When MgO/Y2O3 was used as sintering additives, the packing density and thickness of the powder bed had a much stronger effect than in the case of Al2O3/Y2O3. For the optimization of the powder bed conditions, the vapor pressure and chemical stability of sintering additives at the sintering temperature has to be considered.

Author(s):  
Gareth Thomas

Silicon nitride and silicon nitride based-ceramics are now well known for their potential as hightemperature structural materials, e.g. in engines. However, as is the case for many ceramics, in order to produce a dense product, sintering additives are utilized which allow liquid-phase sintering to occur; but upon cooling from the sintering temperature residual intergranular phases are formed which can be deleterious to high-temperature strength and oxidation resistance, especially if these phases are nonviscous glasses. Many oxide sintering additives have been utilized in processing attempts world-wide to produce dense creep resistant components using Si3N4 but the problem of controlling intergranular phases requires an understanding of the glass forming and subsequent glass-crystalline transformations that can occur at the grain boundaries.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3790
Author(s):  
Yongzheng Ji ◽  
Tsuyoshi Honma ◽  
Takayuki Komatsu

Sodium super ionic conductor (NASICON)-type Na3Zr2Si2PO12 (NZSP) with the advantages of the high ionic conductivity, stability and safety is one of the most famous solid-state electrolytes. NZSP, however, requires the high sintering temperature about 1200 °C and long sintering time in the conventional solid-state reaction (SSR) method. In this study, the liquid-phase sintering (LPS) method was applied to synthesize NZSP with the use of NaPO3 glass with a low glass transition temperature of 292 °C. The formation of NZSP was confirmed by X-ray diffraction analyses in the samples obtained by the LPS method for the mixture of Na2ZrSi2O7, ZrO2, and NaPO3 glass. The sample sintered at 1000 °C for 10 h exhibited a higher Na+ ion conductivity of 1.81 mS/cm at 100 °C and a lower activation energy of 0.18 eV compared with the samples prepared by the SSR method. It is proposed that a new LPE method is effective for the synthesis of NZSP and the NaPO3 glass has a great contribution to the Na+ diffusion at the grain boundaries.


2010 ◽  
Vol 25 (3) ◽  
pp. 471-475 ◽  
Author(s):  
Sea-Hoon Lee ◽  
Byung-Nam Kim ◽  
Hidehiko Tanaka

Al8B4C7 was used as a sintering additive for the densification of nano-SiC powder. The average grain size was approximately 70 nm after sintering SiC-12.5wt% Al8B4C7 at 1550 °C. The densification rate strongly depended on the sintering temperature and the applied pressure. The rearrangement of SiC particles occurred at the initial shrinkage, while viscous flow and liquid phase sintering became important at the middle and final stage of densification.


2016 ◽  
Vol 697 ◽  
pp. 7-11 ◽  
Author(s):  
Shen Qi ◽  
Xiao Jian Mao ◽  
Bao Yan Chai ◽  
Long Zhang

Transparent aluminum oxynitride (AlON) ceramics have been prepared through a method based on direct reaction sintering of alumina and aluminum nitride powders using MgO and Y2O3 as co-additives. The sintering additives could cause the formation of liquid phase during sintering, which would greatly promote the densification and eliminate pores. The grain size of AlON is about 50-100μm. The influence of different component of Al2O3 and AlN as well as sintering temperature on microstructure and optical properties of AlON have been studied. High transparent AlON ceramics with the in-line transmittance of 80.3% at 2000 nm wavelength have been prepared when the concentration of sintering additives was 0.16wt% Y2O3 and 0.02wt% MgO.


2014 ◽  
Vol 879 ◽  
pp. 21-26
Author(s):  
Fauzi Ismail ◽  
Mohd Asri Selamat ◽  
Norhamidi Muhamad ◽  
Abu Bakar Sulong ◽  
Nurzirah Abdul Majid

In this study, the effect of sintering temperature on the properties of tungsten-copper (W-Cu) composite produced by liquid phase sintering (LPS) process has been investigated. W-20 wt.% Cu composite powders with particle size less than 1 μm was prepared by cold compaction and followed by cold isostatic pressing. The green specimens were then sintered under nitrogen based atmosphere in the temperature range of 1100°C to 1300°C. The sintering studies were conducted to determine the extent of densification and corresponding to microstructure changes. In addition, the properties of the sintered specimens such as physical appearance, microstructure evolution, mechanical and electrical properties were presented and discussed.


1998 ◽  
Vol 13 (3) ◽  
pp. 660-664 ◽  
Author(s):  
I. Zajc ◽  
M. Drofenik

Donor-doped BaTiO3 ceramics were prepared by adding PbO B2O3 SiO2 as a sintering aid. Semiconducting BaTiO3 was obtained at a sintering temperature of 1100 °C. The sintered samples exhibit the Positive Temperature Coefficient of Resistivity (PTCR) effect, which depends on the amount of liquid phase, the concentration of the donor-dopant, and the sintering temperature. The cold resistivity of the samples decreases when the sintering temperature increases. The increase of the grain boundary resistivity and hence of the cold resistivity at lower sintering temperatures was explained by applying the diffusion grain boundary layer model.


2014 ◽  
Vol 933 ◽  
pp. 12-16 ◽  
Author(s):  
Chung Long Pan ◽  
Ping Cheng Chen ◽  
Tsu Chung Tan ◽  
Wei Cheng Lin ◽  
Chun Hsu Shen ◽  
...  

The effect of V2O5addition on the microstructures and the microwave dielectric properties of 0.9CaWO4-0.1Mg2SiO4(9CWMS) ceramics prepared by conventional solid-state routes have been investigated. The V2O5were selected as liquid phase sintering aids to lower the sintering temperature of 9CWMS ceramics. A small amount of V2O5(0.25~1 wt%) were used for sintering aid and led to high densification at 1050°C. The dielectric properties of 9CWMS ceramics with V2O5additions are strongly dependent on the densification, the microstructure. As the amount of V2O5additives increased from 0.25 to 1.0 wt%, the dielectric constantsεrdecreased following the trend with density. The quality valuesQdecreased with the increase of V2O5amount for all sintering temperatures. The 0.25 wt% V2O5-doped 0.9CaWO4-0.1Mg2SiO4ceramicssintered at 1080°C for 2 h had the optimum dielectric properties: εr= 5.7;Q×f= 73000 (at 14 GHz).


2007 ◽  
Vol 336-338 ◽  
pp. 1062-1064 ◽  
Author(s):  
Fa Qiang Yan ◽  
Fei Chen ◽  
Qiang Shen ◽  
Lian Meng Zhang

In this study, spark plasma sintering (SPS) was applied to prepare α-Si3N4 ceramics of different densities with magnesia, silicon dioxide, alumina as the sintering aids. The sintering behavior and liquid phase sintering (LPS) mechanism were discussed and the factors influencing the density of the prepared samples were analyzed. Microstructures of sintered samples were observed and the phase compositions were analyzed. The results showed that α-Si3N4 ceramics can be sintered by SPS based on the reaction among α-Si3N4 and sintering additives which lead to the liquid phase and the density can be well controlled from 2.48 to 3.09 g/cm3 while the content of the sintering aids changes from 10% to 28.5% and sintering temperature from 1400°C to 1500°C.


2013 ◽  
Vol 634-638 ◽  
pp. 2378-2382
Author(s):  
Chun Yuan Luo ◽  
Jing Xiao Liu ◽  
Fei Shi ◽  
Ji Wei Wu ◽  
Chao Qian ◽  
...  

AST-doped ZnO-MgTiO3-SrTiO3ceramics were prepared using a solid-state sintering process. The effects of AST (Al2O3-SiO2-TiO2) on the dielectric properties of MgTiO3-based ceramics were investigated. The results indicate that AST-doped MgTiO3-based ceramics could be obtained after 1205~1280°C sintering for 3 h. The XRD results indicate that the obtained MgTiO3-based ceramics contain high percentage of MgTi2O5 phase and the percentage increased with the increase of AST content. It was found that the occurred liquid-phase sintering by adding AST glass could effectively lower the sintering temperature and decrease the dielectric loss of MgTiO3-based ceramics. A minimum tanδ of 1.5×10-4 associated with εr=19.0 was achieved for 6.0 wt% AST-doped samples sintered at 1255°C.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4187 ◽  
Author(s):  
Min-Hang Weng ◽  
Chihng-Tsung Liauh ◽  
Shueei-Muh Lin ◽  
Hung-Hsiang Wang ◽  
Ru-Yuan Yang

The effect of CuO/B2O3 additions on the sintering behaviors, microstructures, and microwave dielectric properties of 0.95LaAlO3–0.05CaTiO3 ceramics is investigated. It is found that the sintering temperatures are lowered efficiently from 1600 °C to 1350 °C, as 1 wt % CuO, 1 wt % B2O3, and 0.5 wt % CuO +0.5 wt % B2O3 are used as the sintering aids due to the appearance of the liquid phase sintering. The microwave dielectric properties of 0.95LaAlO3–0.05CaTiO3 ceramics with the sintering aid additions are strongly related to the densification and the microstructure of the sintered ceramics. At the sintering temperature of 1300 °C, the 0.95LaAlO3–0.05CaTiO3 ceramic with 0.5 wt % CuO + 0.5 wt % B2O3 addition shows the best dielectric properties, including a dielectric constant (εr) of 21, approximate quality factor (Q × f) of 22,500 GHz, and a temperature coefficient of the resonant frequency (τf) of −3 ppm/°C.


Sign in / Sign up

Export Citation Format

Share Document