Effect of film chemistry on refractive index of plasma-enhanced chemical vapor deposited silicon oxynitride films: A correlative study

2008 ◽  
Vol 23 (5) ◽  
pp. 1433-1442 ◽  
Author(s):  
S. Naskar ◽  
S.D. Wolter ◽  
C.A. Bower ◽  
B.R. Stoner ◽  
J.T. Glass

Thick SiOxNy films were deposited by radiofrequency (rf) plasma chemical vapor deposition using silane (SiH4) and nitrous oxide (N2O) source gases. The influence of deposition conditions of gas flow ratio, rf plasma mixed-frequency ratio (100 kHz, 13.56 MHz), and rf power on the refractive index were examined. It was observed that the refractive index of the SiOxNy films increased with N and Si concentration as measured via x-ray photoelectron spectroscopy. Interestingly, a variation of refractive index with N2O:SiH4 flow ratio for the two drive frequencies was observed, suggesting that oxynitride bonding plays an important role in determining the optical properties. The two drive frequencies also led to differences in hydrogen concentration that were found to be correlated with refractive index. Hydrogen concentration has been linked to significant optical absorption losses above index values of ∼1.6, which we identified as a saturation level in our films.

2005 ◽  
Vol 891 ◽  
Author(s):  
Yu-Jeong Cho ◽  
Yeong-Cheol Kim

ABSTRACTSilicon oxynitride (SiON) was deposited as a core layer on a silica (SiO2) under-cladding layer by using plasma enhanced chemical vapor deposition (PECVD). The refractive index of the SiON core layer was varied between 1.45 and 1.78 by changing the gas flow ratio of SiH4, N2O and NH3. Etching experiments were performed using a dry etching equipment to fabricate the SiON core. An optical planar waveguide with a core and under-cladding thicknesses of 6 μm and 8 μm, respectively, and a refractive index contrast (Δn) of 7 % has been fabricated.


1996 ◽  
Vol 427 ◽  
Author(s):  
Seoghyeong Lee ◽  
Jong-Wan Park

AbstractLow dielectric constant fluorine doped silicon oxide films were deposited by using ECR plasma CVD with SiF4 and O2 as source gases diluted in Ar gas. Characterization of films was carried out in terms of various gas flow ratios (SiF4/O2 = 0.2 ∼ 1.6). The microwave power and substrate temperature during deposition were fixed at 700W and 300°C, respectively. The chemical bonding structure of the films was evaluated by Fourier transform infrared spectroscopy (FTIR), fluorine concentration by X-ray photoelectron spectroscopy (XPS) and refractive index by ellipsometry. Dielectric constant was determined from C-V measurements at 1MHz. FTIR spectra shows that as the fluorine concentration increases, peak intensities of Si-F bonding and shoulder peak at around 1160cm−1 of Si-O stretching mode increased. Moreover, with increasing the fluorine concentration in the SiOF film, the peak position of Si-O stretching mode shifts to the higher wavenumber side. The Si-F2 bond peak is observed to rise when the SiF4/O2 gas flow ratio is larger than 1.0. Refractive index and film density decreased with increasing the SiF4/O2 gas flow ratio. The SiOF film deposited at SiF4/O2 gas flow ratio of 1.0 exhibited fluorine content of 11.8 at.% and dielectric constant of 3.14.


2005 ◽  
Vol 475-479 ◽  
pp. 3709-3712 ◽  
Author(s):  
Li Ping Feng ◽  
Zheng Tang Liu

As a coating material with excellent optical and mechanical properties, silica films can be used as anti-reflective and protective layers on the windows and domes of sapphire. In this paper, the designed films of SiO2 have been prepared on sapphire wafers and hemisphere dome of sapphire by radio frequency magnetron reactive sputtering. Compositions and structure of SiO2 films were analyzed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The refractive index of deposited films was measured and effects of the coatings on optical properties of sapphire have been studied. The results express that the refractive index of the films can be varied between 3.4 and 1.4 by changing the gas flow ratio. The deposited films can increase the transmission of sapphire in mid-wave IR greatly. The average transmittance of sapphire wafers coated with SiO2 films on both sides can be increased to 96.43 % in 3~5 µm.


2006 ◽  
Vol 21 (10) ◽  
pp. 2675-2682 ◽  
Author(s):  
S. Chowdhury ◽  
Damon A. Hillman ◽  
Shane A. Catledge ◽  
Valery V. Konovalov ◽  
Yogesh K. Vohra

Ultrasmooth nanostructured diamond (USND) films were synthesized on Ti–6Al–4V medical grade substrates by adding helium in H2/CH4/N2plasma and changing the N2/CH4gas flow from 0 to 0.6. We were able to deposit diamond films as smooth as 6 nm (root-mean-square), as measured by an atomic force microscopy (AFM) scan area of 2 μm2. Grain size was 4–5 nm at 71% He in (H2+ He) and N2/CH4gas flow ratio of 0.4 without deteriorating the hardness (∼50–60 GPa). The characterization of the films was performed with AFM, scanning electron microscopy, x-ray diffraction (XRD), Raman spectroscopy, and nanoindentation techniques. XRD and Raman results showed the nanocrystalline nature of the diamond films. The plasma species during deposition were monitored by optical emission spectroscopy. With increasing N2/CH4feedgas ratio (CH4was fixed) in He/H2/CH4/N2plasma, a substantial increase of CN radical (normalized by Balmer Hαline) was observed along with a drop in surface roughness up to a critical N2/CH4ratio of 0.4. The CN radical concentration in the plasma was thus correlated to the formation of ultrasmooth nanostructured diamond films.


1999 ◽  
Vol 560 ◽  
Author(s):  
Zingway Pei ◽  
Y.J. Chung ◽  
H.L. Hsiao ◽  
H.L. Hwang

ABSTRACTThe intense UV-visible-IR adjustable light emissions from silicon-rich oxynitride thin films without any thermal annealing were observed at room temperature under a 325 nm He-Cd laser excitation. The silicon-rich oxynitride thin films were deposited by plasma enhanced chemical vapor deposition (PECVD) with the mixture of 5% Ar diluted silane and nitrous oxide gases. The strong naked-eye recognizable photoluminescence (blue-white-red) could be adjusted by changing the process gas flow ratio τ =([SiH4]/[N20]). To the best of our knowledge, intense and adjustable UV-blue light emissions in the as-deposited thin films are first reported in this work. The Fourier Transform infrared (FTIR) spectroscopy was applied to investigate the microstructure-bonding configurations, in which silicon polysilane related bonding at 830-890 cm' present that silicon complex, exists along with the Si-O-Si bonding. X-ray photoelectron spectroscopy was used to investigate the binding configuration, the binding energy of Si 2p appearing at 99.3 eV was indicative of formation of the silicon clusters. As a consequence, we suppose that the visible-IR lights emissions might possible be strongly related to silicon clusters formation in the films and the intense UV emissions might come from the oxygen-related defects.


1993 ◽  
Vol 334 ◽  
Author(s):  
T. T. Chau ◽  
P. M. Lam ◽  
K. C. Kao

AbstractElectronic and physical properties of SiO2 films deposited by microwave ECR plasmas of the mixtures of SiH4 and N2O have been measured as functions of the pressure and the gas-flow ratio of N2O to SiH4 gases in the processing chamber. Experimental results show that the film deposition rate increases with increasing SiH4 concentration, that is, with decreasing gas-flow ratio. The films deposited at N2O/SiH4 gas-flow ratios smaller than 10 tend to have a refractive index higher than the thermally grown oxide. However, for the N2O/SiH4 gas-flow ratios between 10 and 20, the films have the refractive index close to that of thermally grown oxide, which is about 1.45-1.46. The film deposition rate increases linearly with increasing pressure. In general, the films deposited at high pressures (>100 mTorr) have a higher refractive index as compared with the thermally grown oxide; also films deposited at high pressures have more electron traps. Good quality SiO2 films can be deposited at pressures with the range of 20 -50 mTorr and the N2O/SiH4 gas-flow ratio of 10.


2016 ◽  
Vol 848 ◽  
pp. 435-439
Author(s):  
Jian Liu ◽  
Jie Liu ◽  
Xing Long Leng ◽  
Fu Rong Qu

Organic/inorganic stacks were deposited on flexible polycarbonate substrate using inductively coupled plasma chemical vapor deposition (ICP-PECVD) for permeation barrier application. The effects of deposition temperature, RF power, gas flow ratio, deposition pressure on film properties of surface roughness, water vapor transmission rate (WVRT) were investigated. Energy dispersive spectrum (EDS), atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to characterize the film characteristics of the stack layers. It was found that the surface roughness Ra was as low as is 0.25 nm. The WVRT values of the optimum barriers structures were 10-2g/m2 day (1 pair of stacks) and 4.8 x 10-5g/m2 day (4 pair of stacks). This result indicated that the permeation barrier films prepared by ICP-PECVD could be a promising candidate for flexible electronic applications.


2002 ◽  
Vol 727 ◽  
Author(s):  
Taewon Jeong ◽  
Jae Hee Han ◽  
Whikun Yi ◽  
SeGi Yu ◽  
Jeonghee Lee ◽  
...  

AbstractUsing a gas mixture of propyne (C3H4) and ammonia (NH3) as a carbon precursor, we have successfully synthesized multiwalled carbon nanotubes (CNTs) by the direct current (dc) plasma enhanced chemical vapor deposition (PECVD) onto Co-sputtered glass at 550°C. As the flow ratio of NH3 to C3H4 in the mixture gas increased, the crystallinity and alignment of CNTs were improved. In addition, the field emission characteristics of CNTs were also improved. the turn-on voltage became lower, and the current density and the field enhancement factor were more increasing. Raman spectroscopy and scanning electron microscopy were utilized to confirm the effect of the gas flow ratio on CNTs. Therefore, the gas flow ratio was found to be one of important factors to govern the crystalline and field emission characteristics of CNTs. The growth mechanism of CNTs using a C3H4 gas is under investigation with the possibility that three carbon atoms in a C3H4 molecule is converted directly to a hexagon of a CNT by combining two molecules.


2019 ◽  
Vol 11 (12) ◽  
pp. 1667-1672
Author(s):  
Jin-Seong Park ◽  
In-Sung Park ◽  
Seon Yong Kim ◽  
Taehoon Lee ◽  
Jinho Ahn ◽  
...  

Non-global-warming CF3I gas has been investigated as a removal etchant for SiO2 film. Thermally fabricated SiO2 films were etched by the plasma generated with a gas mixture of CF3I and O2 (CF3I/O2) in the plasma-enhanced chemical vapor deposition chamber. The etch rate of SiO2 films was studied along with the process parameters of plasma etching such as chamber pressure, etching gas flow ratio of CF3I to CF3I/O2, plasma power, and chamber temperature. Increasing the chamber pressure from 400 to 1,000 mTorr decreased the etch rate of SiO2 film. The etch rate of this film showed a minimum value at a gas flow ratio of 0.71 in CF3I to CF3I/O2 and then increased at a higher CF3I gas flow ratio. In addition, the elevated plasma power increased the etch rate. However, the chamber temperature has little effect on the etch rate of SiO2 films. When only CF3I gas without O2 was supplied for etching, polymerized fluorocarbon was formed on the surface, indicating the role of oxygen in ashing the polymerized fluorocarbon during the etching process.


Sign in / Sign up

Export Citation Format

Share Document