Automated self-assembly and electrical characterization of nanostructured films

2018 ◽  
Vol 8 (02) ◽  
pp. 283-288 ◽  
Author(s):  
Rafael C. Hensel ◽  
Kevin L. Rodrigues ◽  
Vinicius do L. Pimentel ◽  
Antonio Riul ◽  
Varlei Rodrigues

Abstract

2018 ◽  
Vol 19 (10) ◽  
pp. 3019 ◽  
Author(s):  
Türkan Bayrak ◽  
Nagesh Jagtap ◽  
Artur Erbe

The use of self-assembly techniques may open new possibilities in scaling down electronic circuits to their ultimate limits. Deoxyribonucleic acid (DNA) nanotechnology has already demonstrated that it can provide valuable tools for the creation of nanostructures of arbitrary shape, therefore presenting an ideal platform for the development of nanoelectronic circuits. So far, however, the electronic properties of DNA nanostructures are mostly insulating, thus limiting the use of the nanostructures in electronic circuits. Therefore, methods have been investigated that use the DNA nanostructures as templates for the deposition of electrically conducting materials along the DNA strands. The most simple such structure is given by metallic nanowires formed by deposition of metals along the DNA nanostructures. Here, we review the fabrication and the characterization of the electronic properties of nanowires, which were created using these methods.


1999 ◽  
Vol 4 (S1) ◽  
pp. 411-416 ◽  
Author(s):  
L.J. Schowalter ◽  
Y. Shusterman ◽  
R. Wang ◽  
I. Bhat ◽  
G. Arunmozhi ◽  
...  

High quality, epitaxial growth of AlN and AlxGa1−xN by OMVPE has been demonstrated on single-crystal AlN substrates. Here we report characterization of epitaxial layers on an a-face AlN substrate using Rutherford Backscattering/ion channeling, atomic force microscopy (AFM), x-ray rocking curves, and preliminary electrical characterization. Ion channeling along the [100] axis gives a channeling minimum yield of 1.5% indicating a very high quality epitaxial layer.


2016 ◽  
Vol 31 (17) ◽  
pp. 2649-2661 ◽  
Author(s):  
Rupan Preet Kaur ◽  
Ravinder Singh Sawhney ◽  
Derick Engles

Abstract


Molecules ◽  
2020 ◽  
Vol 25 (20) ◽  
pp. 4817
Author(s):  
Dulashani R. Ranasinghe ◽  
Basu R. Aryal ◽  
Tyler R. Westover ◽  
Sisi Jia ◽  
Robert C. Davis ◽  
...  

Self-assembly nanofabrication is increasingly appealing in complex nanostructures, as it requires fewer materials and has potential to reduce feature sizes. The use of DNA to control nanoscale and microscale features is promising but not fully developed. In this work, we study self-assembled DNA nanotubes to fabricate gold nanowires for use as interconnects in future nanoelectronic devices. We evaluate two approaches for seeding, gold and palladium, both using gold electroless plating to connect the seeds. These gold nanowires are characterized electrically utilizing electron beam induced deposition of tungsten and four-point probe techniques. Measured resistivity values for 15 successfully studied wires are between 9.3 × 10−6 and 1.2 × 10−3 Ωm. Our work yields new insights into reproducible formation and characterization of metal nanowires on DNA nanotubes, making them promising templates for future nanowires in complex electronic circuitry.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Türkan Bayrak ◽  
Amanda Martinez-Reyes ◽  
David Daniel Ruiz Arce ◽  
Jeffrey Kelling ◽  
Enrique C Samano ◽  
...  

AbstractWe introduce a method based on directed molecular self-assembly to manufacture and electrically characterise C-shape gold nanowires which clearly deviate from typical linear shape due to the design of the template guiding the assembly. To this end, gold nanoparticles are arranged in the desired shape on a DNA-origami template and enhanced to form a continuous wire through electroless deposition. C-shape nanowires with a size below 150nm on a $${\hbox {SiO}_2}/\hbox {Si}$$ SiO 2 / Si substrate are contacted with gold electrodes by means of electron beam lithography. Charge transport measurements of the nanowires show hopping, thermionic and tunneling transports at different temperatures in the 4.2K to 293K range. The different transport mechanisms indicate that the C-shape nanowires consist of metallic segments which are weakly coupled along the wires.


1981 ◽  
Vol 4 ◽  
Author(s):  
T. J. Stultz ◽  
J. F. Gibbons

ABSTRACTStructural and electrical characterization of laser recrystallized LPCVD silicon films on amorphous substrates using a shaped cw laser beam have been performed. In comparing the results to data obtained using a circular beam, it was found that a significant increase in grain size can be achieved and that the surface morphology of the shaped beam recrystallized material was much smoother. It was also found that whereas circular beam recrystallized material has a random grain structure, shaped beam material is highly oriented with a <100> texture. Finally the electrical characteristics of the recrystallized film were very good when measured in directions parallel to the grain boundaries.


2011 ◽  
Vol E94-C (2) ◽  
pp. 157-163 ◽  
Author(s):  
Masakazu MUROYAMA ◽  
Ayako TAJIRI ◽  
Kyoko ICHIDA ◽  
Seiji YOKOKURA ◽  
Kuniaki TANAKA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document