III-V CMOS technologies on Si platform

2011 ◽  
Vol 1336 ◽  
Author(s):  
M. Takenaka ◽  
S. Takagi

ABSTRACTThe heterogeneous integration of III-V semiconductors with the Si platform is expected to provide high performance CMOS logic for future technology nodes because of high electron mobility and low electron effective mass in III-V semiconductors. However, there are many technology issues to be addressed for integrating III-V MOSFETs on the Si platform as follow; high-quality MOS interface formation, low resistivity source/drain formation, and high-quality III-V film formation on Si substrates. In this paper, we present several possible solutions for the above critical issues of III-V MOSFETs on the Si platform. In addition, we present the III-V CMOS photonics platform on which III-V MOSFETs and III-V photonics can be monolithically integrated for ultra-large scale electric-optic integrated circuits.

Author(s):  
C.K. Wu ◽  
P. Chang ◽  
N. Godinho

Recently, the use of refractory metal silicides as low resistivity, high temperature and high oxidation resistance gate materials in large scale integrated circuits (LSI) has become an important approach in advanced MOS process development (1). This research is a systematic study on the structure and properties of molybdenum silicide thin film and its applicability to high performance LSI fabrication.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7637
Author(s):  
Joshua Grant ◽  
Grey Abernathy ◽  
Oluwatobi Olorunsola ◽  
Solomon Ojo ◽  
Sylvester Amoah ◽  
...  

Group-IV alloy GeSn holds great promise for the high-performance optoelectronic devices that can be monolithically integrated on Si for near- and mid-infrared applications. Growth of GeSn using chemical vapor deposition technique with various Sn and Ge precursors has been investigated worldwide. To achieve relatively high Sn incorporation, the use of higher pressure and/or higher order Ge hydrides precursors were reported. In this work, we successfully demonstrated the growth of high-quality GeSn with Sn composition of 16.7% at low pressure of 12 Torr. The alloy was grown using the commercially available GeH4 and SnCl4 precursors via a chemical vapor deposition reactor. Material and optical characterizations were performed to confirm the Sn incorporation and to study the optical properties. The demonstrated growth results reveal a low-pressure growth window to achieve high-quality and high Sn alloys for future device applications.


2020 ◽  
Vol 68 (3) ◽  
pp. 878-895
Author(s):  
Ragheb Rahmaniani ◽  
Shabbir Ahmed ◽  
Teodor Gabriel Crainic ◽  
Michel Gendreau ◽  
Walter Rei

Many methods that have been proposed to solve large-scale MILP problems rely on the use of decomposition strategies. These methods exploit either the primal or dual structures of the problems by applying the Benders decomposition or Lagrangian dual decomposition strategy, respectively. In “The Benders Dual Decomposition Method,” Rahmaniani, Ahmed, Crainic, Gendreau, and Rei propose a new and high-performance approach that combines the complementary advantages of both strategies. The authors show that this method (i) generates stronger feasibility and optimality cuts compared with the classical Benders method, (ii) can converge to the optimal integer solution at the root node of the Benders master problem, and (iii) is capable of generating high-quality incumbent solutions at the early iterations of the algorithm. The developed algorithm obtains encouraging computational results when used to solve various benchmark MILP problems.


2021 ◽  
pp. 1-12
Author(s):  
Bilal Tahir ◽  
Muhammad Amir Mehmood

 The confluence of high performance computing algorithms and large scale high-quality data has led to the availability of cutting edge tools in computational linguistics. However, these state-of-the-art tools are available only for the major languages of the world. The preparation of large scale high-quality corpora for low resource language such as Urdu is a challenging task as it requires huge computational and human resources. In this paper, we build and analyze a large scale Urdu language Twitter corpus Anbar. For this purpose, we collect 106.9 million Urdu tweets posted by 1.69 million users during one year (September 2018-August 2019). Our corpus consists of tweets with a rich vocabulary of 3.8 million unique tokens along with 58K hashtags and 62K URLs. Moreover, it contains 75.9 million (71.0%) retweets and 847K geotagged tweets. Furthermore, we examine Anbar using a variety of metrics like temporal frequency of tweets, vocabulary size, geo-location, user characteristics, and entities distribution. To the best of our knowledge, this is the largest repository of Urdu language tweets for the NLP research community which can be used for Natural Language Understanding (NLU), social analytics, and fake news detection.


2012 ◽  
Vol 1437 ◽  
Author(s):  
Gunnar B. Malm ◽  
Mohammadreza Kolahdouz ◽  
Fredrik Forsberg ◽  
Niclas Roxhed ◽  
Frank Niklaus

ABSTRACTSemiconductor-based thermistors are very attractive sensor materials for uncooled thermal infrared (IR) bolometers. Very large scale heterogeneous integration of MEMS is an emerging technology that allows the integration of epitaxially grown, high-performance IR bolometer thermistor materials with pre-processed CMOS-based integrated circuits for the sensor read-out. Thermistor materials based on alternating silicon (Si) and silicon-germanium (SiGe) epitaxial layers have been demonstrated and their performance is continuously increasing. Compared to a single layer of silicon or SiGe, the temperature coefficient of resistance (TCR) can be strongly enhanced to about 3 %/K, by using thin alternating layers. In this paper we report on the optimization of alternating Si/SiGe layers by advanced physically based simulations, including quantum mechanical corrections. Our simulation framework provides reliable predictions for a wide range of SiGe layer compositions, including concentration gradients. Finally, our SiGe thermistor layers have been evaluated in terms of low-frequency noise performance, in order to optimize the bolometer detectivity.


2021 ◽  
Vol 7 (7) ◽  
pp. eabc8844
Author(s):  
Yucheng Liu ◽  
Yunxia Zhang ◽  
Xuejie Zhu ◽  
Zhou Yang ◽  
Weijun Ke ◽  
...  

The triple-cation mixed-halide perovskite (FAxMAyCs1-x-y)Pb(IzBr1-z)3 (FAMACs) is the best composition for thin-film solar cells. Unfortunately, there is no effective method to prepare large single crystals (SCs) for more advanced applications. Here, we report an effective additive strategy to grow 2-inch-sized high-quality FAMACs SCs. It is found that the judiciously selected reductant [formic acid (FAH)] effectively minimizes iodide oxidation and cation deprotonation responsible for phase segregation. Consequently, the FAMACs SC shows more than fivefold enhancement in carrier lifetimes, high charge mobility, long carrier diffusion distance, as well as superior uniformity and long-term stability, making it possible for us to design high-performance self-powered integrated circuit photodetector. The device exhibits large responsivity, high photoconductive gain, excellent detectivity, and fast response speed; all values are among the highest reported to date for planar-type single-crystalline perovskite photodetectors. Furthermore, an integrated imaging system is fabricated on the basis of 12 × 12 pixelated matrixes of the single-crystal photodetectors.


2013 ◽  
Vol 1538 ◽  
pp. 363-369
Author(s):  
Di Liang ◽  
Géza Kurczveil ◽  
Marco Fiorentino ◽  
Sudharsanan Srinivasan ◽  
David A. Fattal ◽  
...  

ABSTRACTHybrid silicon laser is a promising solution to enable high-performance light source on large-scale, silicon-based photonic integrated circuits (PICs). As a compact laser cavity design, hybrid microring lasers are attractive for their intrinsic advantages of small footprint, low power consumption and flexibility in wavelength division multiplexing (WDM), etc. Here we review recent progress in unidirectional microring lasers and device thermal management. Unidirectional emission is achieved by integrating a passive reflector that feeds laser emission back into laser cavity to introduce extra unidirectional gain. Up to 4X of device heating reduction is simulated by adding a metal thermal shunt to the laser to “short” heat to the silicon substrate through buried oxide layer (BOX) in the silicon-on-insulator (SOI) substrate. Obvious device heating reduction is also observed in experiment.


2016 ◽  
Vol 14 ◽  
Author(s):  
Ana Marasović ◽  
Mengfei Zhou ◽  
Alexis Palmer ◽  
Anette Frank

Modal verbs have different interpretations depending on their context. Their sense categories – epistemic, deontic and dynamic – provide important dimensions of meaning for the interpretation of discourse. Previous work on modal sense classification achieved relatively high performance using shallow lexical and syntactic features drawn from small-size annotated corpora. Due to the restricted empirical basis, it is difficult to assess the particular difficulties of modal sense classification and the generalization capacity of the proposed models. In this work we create large-scale, high-quality annotated corpora for modal sense classification using an automatic paraphrase-driven projection approach. Using the acquired corpora, we investigate the modal sense classification task from different perspectives.


2020 ◽  
Vol 8 ◽  
Author(s):  
Dingding Qiu ◽  
Muhammad Abdullah Adil ◽  
Kun Lu ◽  
Zhixiang Wei

Bulk heterojunction (BHJ) organic solar cells (OSCs) can be regarded as one of the most promising energy generation technologies for large-scale applications. Despite their several well-known drawbacks, the devices where polymers are employed as the donor are still leading the OSC universe in terms of performance. Such performance generally depends upon various critical factors such as the crystallinity of the material, the crystallization process during the film formation, and also the final film morphology. Despite a few reviews on the structure of the polymer donor materials and device performance, not enough attention has been paid toward the crystallinity problem. Herein, the structure and crystallinity of the representative polymer donor materials and the corresponding device properties have been briefly reviewed. Furthermore, several typical methods for controlling the crystallinity of materials have been summarized and illustrated as well. Moreover, the obstacles lying in the way of successful commercialization of such polymer solar cells have been systematically discussed. The in-depth interpretation of the crystallinity of the polymer donors in this article may stimulate novel ideas in material design and device fabrication.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Peter Andersson Ersman ◽  
Roman Lassnig ◽  
Jan Strandberg ◽  
Deyu Tu ◽  
Vahid Keshmiri ◽  
...  

Abstract The communication outposts of the emerging Internet of Things are embodied by ordinary items, which desirably include all-printed flexible sensors, actuators, displays and akin organic electronic interface devices in combination with silicon-based digital signal processing and communication technologies. However, hybrid integration of smart electronic labels is partly hampered due to a lack of technology that (de)multiplex signals between silicon chips and printed electronic devices. Here, we report all-printed 4-to-7 decoders and seven-bit shift registers, including over 100 organic electrochemical transistors each, thus minimizing the number of terminals required to drive monolithically integrated all-printed electrochromic displays. These relatively advanced circuits are enabled by a reduction of the transistor footprint, an effort which includes several further developments of materials and screen printing processes. Our findings demonstrate that digital circuits based on organic electrochemical transistors (OECTs) provide a unique bridge between all-printed organic electronics (OEs) and low-cost silicon chip technology for Internet of Things applications.


Sign in / Sign up

Export Citation Format

Share Document