The experimental determination of the onset of electrical and thermal conductivity percolation thresholds in carbon nanotube-polymer composites

2011 ◽  
Vol 1312 ◽  
Author(s):  
Byung-wook Kim ◽  
Steven Pfeifer ◽  
Sung-Hoon Park ◽  
Prabhakar R. Bandaru

ABSTRACTWe show evidence of electrical and thermal conductivity percolation in polymer based carbon nanotube (CNT) composites, which follow power law variations with respect to the CNT concentrations in the matrix. The experimentally obtained percolation thresholds, i.e., ~ 0.074 vol % for single walled CNTs and ~ 2.0 vol % for multi-walled CNTs, were found to be aspect ratio dependent and in accordance with those determined theoretically from excluded volume percolation theory. A much greater enhancement, over 10 orders of magnitude, was obtained in the electrical conductivity at the percolation threshold, while a smaller increase of ~ 100 % was obtained in the thermal conductivity values. Such a difference is qualitatively explained on the basis of the respective conductivity contrast between the CNT filler and the polymer matrix.

1999 ◽  
Vol 122 (1) ◽  
pp. 171-175 ◽  
Author(s):  
A. Decarlis ◽  
M. Jaeger ◽  
R. Martin

This paper concerns the determination of the effective thermal conductivity of heterogeneous media with randomly dispersed inclusions. Inclusions of arbitrary shape can be considered since the self-consistent problem is solved numerically with the finite element method. Results for many different cases of heterogeneous media with axially symmetrical inclusions are presented. Moreover, the influence of the inclusion’s shape on the pseudo-percolation threshold is investigated. [S0022-1481(00)00801-X]


Author(s):  
Lin Hu ◽  
Haibin Chen ◽  
Gabriella Coloyan ◽  
Alan J. H. McGaughey

A carbon nanotube (CNT) aerogel is a low-density network of small diameter single-walled CNTs held together by van del Waals forces. Due to the excellent mechanical, thermal, and electrical properties of individual CNTs and the potential to fuse the junctions in the aerogel, CNT aerogels are candidates for ultralight structural media, radiation detectors, thermal insulators, and electrical conductors. Using molecular dynamics (MD) simulation, we predict the thermal conductance of the junction formed between two CNTs. To access the range of conditions present in the aerogel, we test the effects of different boundary conditions, the CNT lengths, and the rotational angle of the CNTs. A 3-D network model of the aerogel is built that will be used with the MD predictions to estimate the aerogel thermal conductivity.


2019 ◽  
Vol 54 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Ömer Bahadır Mergen ◽  
Ertan Arda ◽  
Gülşen Akın Evingür

In this study, we have investigated and compared electrical, optical, and mechanical properties of polystyrene thin films with added multi-walled carbon nanotube and carbon mesoporous. Surface conductivity ( σ), scattered light intensity ( I sc), and all the mechanical parameters of these composites have increased with increasing the content of carbon filler (multi-walled carbon nanotube or carbon mesoporous) in the polystyrene composites. This behavior in electrical, mechanical, and optical properties of the polystyrene/carbon fiber composites has been explained by classical and site percolation theory, respectively. The electrical percolation thresholds ( R σ) were determined to be 8.0 wt% for polystyrene/multi-walled carbon nanotube and 25.0 wt% for polystyrene/carbon mesoporous composites. The optical percolation thresholds were found to be R op = 0.8 wt.% for polystyrene/multi-walled carbon nanotube and R op = 3.0 wt.% for polystyrene/carbon mesoporous composites. For the polystyrene/carbon mesoporous composite system, it was determined that the mechanical percolation threshold occurred at lower R values than the polystyrene/multi-walled carbon nanotube composite system. The electrical ( β σ), optical ( β op), and mechanical ( β m) critical exponents have been calculated for both of the polystyrene/carbon fiber composites and obtained as compatible with used percolation theory.


2010 ◽  
Vol 09 (04) ◽  
pp. 377-381
Author(s):  
KUMAR RAJ ◽  
QING ZHANG ◽  
LIANGYU YAN ◽  
MARY B. CHAN PARK

We report on the fabrication of carbon nanotube field effect transistors (CNTFETs) from dispersed single-walled CNTs using OCMC (O-Carboxymethylchitosan) as the surfactant. The as-prepared devices exhibit p-type as well as ambipolar characteristics due to oxygen adsorption at the metal/nanotube contacts. The Raman scattering from the SWCNTs shows that OCMC disperses CNTs efficiently. Rapid thermal annealing (RTA) at 400°C for 5 min is found to partially remove OCMC from the surface of SWCNTs.


2016 ◽  
Vol 677 ◽  
pp. 163-168
Author(s):  
Lenka Bodnárová ◽  
Jitka Peterková ◽  
Jiri Zach ◽  
Kateřina Sovová

A range of testing methods were used to study the potential structural changes as a result of the effects of high temperatures on lightweight types of concrete developed above all for fire resistant structures. One such test for monitoring changes in concrete structures is the non-stationary determination of the coefficient of thermal conductivity using the hot wire method. The matrix structure progressively collapses as a result of the effects of high temperatures on the concrete structure ́s surface because erosion takes place of the matrix and aggregate porous structures. The degradation of the porosity of the concrete results in the deterioration of its thermal insulating properties. This paper assesses the dependence of the thermal conductivity coefficient of lightweight concretes on temperature and determines the potential occurrence of structural changes in the lightweight concrete matrix. The results were verified using other methods to determine the concrete ́s resistance to thermal load.


Author(s):  
С.В. Булярский ◽  
Д.А. Богданова ◽  
Е.П. Кицюк ◽  
А.В. Лакалин ◽  
А.А. Павлов ◽  
...  

AbstractExperimental data showing a decrease in the work function of carbon nanotube (CNT) bundles and arrays hydrogenated in hydrogen-containing plasma are presented. This plasma treatment leads to hydrogen chemisorption on CNTs, which results in a work-function decrease from 4.8 to 3.3 eV. The experimental data confirm quantum-mechanical calculations for single-walled CNTs of variable chirality. Calculations indicate that a decrease in the CNT work function depends on both the properties of CNT and the degree of its passivation by hydrogen.


Nanoscale ◽  
2021 ◽  
Author(s):  
Fan Wu ◽  
Yushun Zhao ◽  
Yifan Zhao ◽  
Yue Zhao ◽  
Chao Sui ◽  
...  

The fiber-based fabrics have great potentials in impacting protection. Here we proposed a novel nanostructure, where the single-walled CNTs (SWCNTs) was employed to weave plain 2D films. The in-plane mechanical...


Author(s):  
H.J. Dudek

The chemical inhomogenities in modern materials such as fibers, phases and inclusions, often have diameters in the region of one micrometer. Using electron microbeam analysis for the determination of the element concentrations one has to know the smallest possible diameter of such regions for a given accuracy of the quantitative analysis.In th is paper the correction procedure for the quantitative electron microbeam analysis is extended to a spacial problem to determine the smallest possible measurements of a cylindrical particle P of high D (depth resolution) and diameter L (lateral resolution) embeded in a matrix M and which has to be analysed quantitative with the accuracy q. The mathematical accounts lead to the following form of the characteristic x-ray intens ity of the element i of a particle P embeded in the matrix M in relation to the intensity of a standard S


Author(s):  
Dr. G. Kaemof

A mixture of polycarbonate (PC) and styrene-acrylonitrile-copolymer (SAN) represents a very good example for the efficiency of electron microscopic investigations concerning the determination of optimum production procedures for high grade product properties.The following parameters have been varied:components of charge (PC : SAN 50 : 50, 60 : 40, 70 : 30), kind of compounding machine (single screw extruder, twin screw extruder, discontinuous kneader), mass-temperature (lowest and highest possible temperature).The transmission electron microscopic investigations (TEM) were carried out on ultra thin sections, the PC-phase of which was selectively etched by triethylamine.The phase transition (matrix to disperse phase) does not occur - as might be expected - at a PC to SAN ratio of 50 : 50, but at a ratio of 65 : 35. Our results show that the matrix is preferably formed by the components with the lower melting viscosity (in this special case SAN), even at concentrations of less than 50 %.


Author(s):  
C.T. Hu ◽  
C.W. Allen

One important problem in determination of precipitate particle size is the effect of preferential thinning during TEM specimen preparation. Figure 1a schematically represents the original polydispersed Ni3Al precipitates in the Ni rich matrix. The three possible type surface profiles of TEM specimens, which result after electrolytic thinning process are illustrated in Figure 1b. c. & d. These various surface profiles could be produced by using different polishing electrolytes and conditions (i.e. temperature and electric current). The matrix-preferential-etching process causes the matrix material to be attacked much more rapidly than the second phase particles. Figure 1b indicated the result. The nonpreferential and precipitate-preferential-etching results are shown in Figures 1c and 1d respectively.


Sign in / Sign up

Export Citation Format

Share Document