scholarly journals MD Simulations of Compression of Nanoscale Iron Pillars

2011 ◽  
Vol 1369 ◽  
Author(s):  
Con J. Healy ◽  
Graeme J. Ackland

ABSTRACTIt is now possible to create perfect crystal nanowires of many metals. The deformation of such objects requires a good understanding of the processes involved in plasticity at the nanoscale. Isotropic compression of such nanometre scale micropillars is a good model system to understand the plasticity. Here we investigate these phenomena using Molecular Dynamics (MD) simulations of nanometre scale single crystal BCC iron pillars in compression.We find that pillars with large length to width ratio may buckle under high strain rates. The type of buckling behaviour depends sensitively on the boundary conditions used: periodic boundary conditions allow for rotation at top and bottom of the pillar, and result in an S shaped buckle, by contrast fixed boundaries enforce a C shape. Pillars with a length to width ratio closer to that used in experimental micropillar compression studies show deformation behaviour dominated by slip, in agreement with the experiments. For micropillars oriented along <100>, slip occurs on <110> planes and localized slip bands are formed. Pillars of this size experience higher stresses than bulk materials before yielding takes place. One might expect that this may be in part due to the lack of nucleation sites needed to induce slip. However, further simulations with possible dislocation sources: a shorter iron pillar containing a spherical grain boundary, and a similar pillar containing jagged edges did not show a decreased yield strength.

2013 ◽  
Vol 405-408 ◽  
pp. 1939-1944
Author(s):  
Gui Lan Tao ◽  
Li Zhang

Spring-damper units were set on the boundaries to absorb incident waves and reflected scattering waves to realize viscoelastic artificial boundary (VAB). The equivalent node load input method was used to simulate the VAB and viscoelastic boundary element wave input. Programming is based on APDL secondary development language with ANSYS finite element software. Considering the interaction between chamber structure and the surrounding soil, docking chamber structure dynamic model is established based on the VAB. The linear elastic model was used for concrete structure. The D-P nonlinear model was used for the back soil calculation. Docking chamber structure dynamic analysis under conditions of fixed boundaries and viscoelastic boundaries were conducted. The result indicated that under the viscoelastic boundary conditions, dynamic acceleration response is significant on the top of the lock wall, which is approximately 2.5 times of the value on the bottom of the lock wall. The maximum response stress appears near the cross point of the lock wall and the bottom floor with value of approximately 5620 kPa;.The chamber bottom floor is subjected to tension and maximum stress with the value of approximately 6180 kPa. Usually, the structure response under the fixed boundary conditions is higher than the structure response under the viscoelastic boundary conditions.


Author(s):  
Angelina Folberth ◽  
Swaminath Bharadwaj ◽  
Nico van der Vegt

We report the effect of trimethylamine N-oxide (TMAO) on the solvation of nonpolar solutes in water studied with molecular dynamics (MD) simulations and free-energy calculations. The simulation data indicate the...


1993 ◽  
Vol 307 ◽  
Author(s):  
J. P. Quintana ◽  
V. I. Kushnir ◽  
P. Georgopoulos

ABSTRACTFinite element results are presented for the case of an elastically bent isotropic rectangular crystal with clamped boundary conditions. Results show that the anticlastic curvature can be eliminated in the center of the crystal provided the crystal length to width ratio fits a “golden aspect ratio” which is dependent on the Poisson coefficient ν. For ν=0.262 (appropriate for Si(111)), this ratio is approximately equal to 1.42.


1982 ◽  
Vol 25 (1) ◽  
pp. 1-18 ◽  
Author(s):  
John C. Wilson

Many problems involving the solution of partial differential equations require the solution over a finite region with fixed boundaries on which conditions are prescribed. It is a well known fact that the numerical solution of many such problems requires additional conditions on these boundaries and these conditions must be chosen to ensure stability. This problem has been considered by, amongst others, Kreiss [11, 12, 13], Osher [16, 17], Gustafsson et al. [9] Gottlieb and Tarkel [7] and Burns [1]


2011 ◽  
Vol 335-336 ◽  
pp. 498-501 ◽  
Author(s):  
Hai Fei Zhan ◽  
Yuan Tong Gu ◽  
Cheng Yan ◽  
Prasad K.D.V. Yarlagadda

Molecular dynamics (MD) simulations have been carried out to investigate the defect’s effect on the mechanical properties of single-crystal copper nanowire with different surface defects, under torsion deformation. The torsional rigidity is found insensitive to the surface defects and the critical angle appears an obvious decrease due to the surface defects, the largest decrease is found for the nanowire with surface horizon defect. The deformation mechanism appears different degrees of influence due to surface defects. The surface defects play a role of dislocation sources. Comparing with single intrinsic stacking faults formation for the perfect nanowire, much affluent deformation processes have been activated because of surface defects, for instance, we find the twins formation for the nanowire with a surface 45odefect.


2015 ◽  
Vol 39 (4) ◽  
pp. 639-644 ◽  
Author(s):  
Elżbieta Augustyn ◽  
Marek S. Kozień ◽  
Michał Pracik

Abstract Beams with rectangular cross-section, with large length-to-width ratio, can be excited to torsional vibrations. If the piezoelectric elements are mounted to the beam in pairs at the same cross-section with two separated elements positioned on the same side of the beam, and the voltages applied to them are in the opposite phase, they produce twisting moments which can be applied to reduce the torsional vibrations. Results of FEM simulations are presented and analysed in the paper. All analyses are performed for a steel free-clamped beam. The piezoelectric elements made of PZT material are mounted in pairs on one side of the beam. The analyses are done for separated natural modes.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1127
Author(s):  
Ruonan Wang ◽  
Haosheng Pang ◽  
Minglin Li ◽  
Lianfeng Lai

Surface landscapes have vague impact on the mechanical properties of graphene. In this paper, single-layered graphene sheets (SLGS) with regular wrinkles were first constructed by applying shear deformation using molecular dynamics (MD) simulations and then indented to extract their mechanical properties. The influence of the boundary condition of SLGS were considered. The wrinkle features and wrinkle formation processes of SLGS were found to be significantly related to the boundary conditions as well as the applied shear displacement and velocity. The wrinkling amplitude and degree of wrinkling increased with the increase in the applied shear displacements, and the trends of wrinkling wavelengths changed with the different boundary conditions. With the fixed boundary condition, the degree of graphene wrinkling was only affected when the velocity was greater than a certain value. The effect of wrinkles on the mechanical characterization of SLGS by atomic force microscopy (AFM) nanoindentation was finally investigated. The regular surface wrinkling of SLGS was found to weaken the Young’s modulus of graphene. The Young’s modulus of graphene deteriorates with the increase in the degree of regular wrinkling.


1998 ◽  
Vol 120 (1) ◽  
pp. 166-173 ◽  
Author(s):  
M. Karthikeyan ◽  
J. Huang ◽  
J. Plawsky ◽  
P. C. Wayner

The generic nonisothermal constrained vapor bubble (CVB) is a miniature, closed heat transfer device capable of high thermal conductance that uses interfacial forces to recirculate the condensate on the solid surface constraining the vapor bubble. Herein, for the specific case of a large length-to-width ratio it is equivalent to a wickless heat pipe. Experiments were conducted at various heat loads on a pentane/quartz CVB to measure the fundamental governing parameter fields: temperature, pressure, and liquid film curvature. An “intermediate” section with a large effective axial thermal conductivity was identified wherein the temperature remains nearly constant. A one-dimensional steady-state model of this intermediate section was developed and solved numerically to yield pressure, velocity, and liquid film curvature profiles. The experimentally obtained curvature profiles agree very well with those predicted by the Young-Laplace model. The operating temperature of the CVB was found to be a function of the operating pressure and not a function of the heat load. Due to experimental design limitations, the fundamental operating limits of the CVB were not reached.


2012 ◽  
Vol 736 ◽  
pp. 13-20 ◽  
Author(s):  
Karri V. Mani Krishna ◽  
Prita Pant

Dislocation Dynamics (DD) simulations are used to study the evolution of a pre-specified dislocation structure under applied stresses and imposed boundary conditions. These simulations can handle realistic dislocation densities ranging from 1010 to 1014 m-2, and hence can be used to model plastic deformation and strain hardening in metals. In this paper we introduce the basic concepts of DD simulations and then present results from simulations in thin copper films and in bulk zirconium. In both cases, the effect of orientation on deformation behaviour is investigated. For the thin film simulations, rigid boundary conditions are used at film-substrate and film-passivation interfaces leading to dislocation accumulation, while periodic boundaries are used for bulk grains of Zr. We show that there is a clear correlation between strain hardening rate and the rate of increase of dislocation density.


2006 ◽  
Vol 114 ◽  
pp. 101-108 ◽  
Author(s):  
Vil D. Sitdikov ◽  
Roza G. Chembarisova ◽  
Igor V. Alexandrov

In the investigation the 3D version of the Estrin-Tóth dislocation model was used to analyze deformation behaviour of pure Cu, subjected to high pressure torsion (HPT) under pressures equal to 0.8, 2, 5, 8 GPa. As a result of the computer simulation, the nature and reasons for strain hardening are analyzed, the dislocation density evolution versus degree of SPD and graincell size versus degree of SPD curves were plotted. It is shown that the model adequately reflects the acting deformation mechanisms and structural changes during HPT at different applied pressures. It has been stated that an increase of the applied pressure at HPT leads to an increase in the activity of dislocation sources and sinks in the grain-cell walls. Misorientations between boundaries are estimated. It is revealed that an increase of the applied pressure contributes to a growth of the misorientation angles between neighbouring grain-cells.


Sign in / Sign up

Export Citation Format

Share Document