Mapping Residual-Stress Distributions in a Laser-Peened Vit-105 Bulk-Metallic Glass Using the Focused-Ion-Beam Micro-Slitting Method

2011 ◽  
Vol 1300 ◽  
Author(s):  
B. Winiarski ◽  
G. Wang ◽  
X. Xie ◽  
Y. Cao ◽  
Y. Shin ◽  
...  

ABSTRACTMeasuring residual-stresses at the micron scale in glassy materials imposes experimental challenges, particularly when using diffraction, or other conventional laboratory methods, e.g., optical non-contact methods, grid methods, etc. In this short paper, a technique for mapping residual-stress profiles in amorphous materials with high spatial definition is used to measure residual-stresses in a laser-peened and fatigued bulk-metallic glass - Vit-105. The method involves local deposition of nano Pt dots patterns on the mapped region of the specimen and milling of a series of micro-slots of size 15 × 2 × 0.4 μm3 using the focused ion beam of a dual beam Field Emission Gun Scanning Electron Microscope / Focused Ion Gun (FEGSEM/FIB) instrument. The deformation fields in the vicinity of slots are reconstructed by the digital image correlation analyses (DICA) of FEGSEM images recorded during milling. The residual-stresses are inferred by fitting a reference displacement field obtained from finite-element analyses (FEA) with the recorded displacement field. In this way, residual-stress distributions have been characterized as a function of the distance from the laser-peened surface to a depth of 1,200 microns with a spatial resolution of 30 μm. The influence of fatigue loading on the compressive residual-stresses spatial distribution is studied and discussed. It was found that the fatigue loading significantly changes the compressive residual-stress spatial distribution in the laser-peened layer.

JOM ◽  
2021 ◽  
Author(s):  
Alexander J. Leide ◽  
Richard I. Todd ◽  
David E. J. Armstrong

AbstractSilicon carbide is desirable for many nuclear applications, making it necessary to understand how it deforms after irradiation. Ion implantation combined with nanoindentation is commonly used to measure radiation-induced changes to mechanical properties; hardness and modulus can be calculated from load–displacement curves, and fracture toughness can be estimated from surface crack lengths. Further insight into indentation deformation and fracture is required to understand the observed changes to mechanical properties caused by irradiation. This paper investigates indentation deformation using high-resolution electron backscatter diffraction (HR-EBSD) and Raman spectroscopy. Significant differences exist after irradiation: fracture is suppressed by swelling-induced compressive residual stresses, and the plastically deformed region extends further from the indentation. During focused ion beam cross-sectioning, indentation cracks grow, and residual stresses are modified. The results clarify the mechanisms responsible for the modification of apparent hardness and apparent indentation toughness values caused by the compressive residual stresses in ion-implanted specimens.


2006 ◽  
Vol 129 (3) ◽  
pp. 345-354 ◽  
Author(s):  
P. Dong

In this paper, some of the important controlling parameters governing weld residual stress distributions are presented for girth welds in pipe and vessel components, based on a large number of residual stress solutions available to date. The focus is placed upon the understanding of some of the overall characteristics in through-wall residual stress distributions and their generalization for vessel and pipe girth welds. In doing so, a unified framework for prescribing residual stress distributions is outlined for fitness-for-service assessment of vessel and pipe girth welds. The effects of various joint geometry and welding procedure parameters on through thickness residual stress distributions are also demonstrated in the order of their relative importance.


2015 ◽  
Vol 665 ◽  
pp. 169-172
Author(s):  
Yoshimasa Takahashi ◽  
Hikaru Kondo ◽  
Kazuya Aihara ◽  
Masanori Takuma ◽  
Kenichi Saitoh ◽  
...  

The strength against interfacial fracture initiation from a free-edge of Si/Cu micro-components was evaluated. The micro-scale cantilever specimens containing dissimilar interfaces were fabricated with a focused-ion-beam (FIB) technique, and they were loaded with a quantitative nanoindenter holder operated in a transmission electron microscope (TEM). The specimens were successfully fractured along the Si/Cu interface, and the critical loads at fracture were measured. The critical stress distribution near the free-edge was evaluated with the finite element method (FEM). The near-edge stress distributions of 90°/90°-shaped specimens were scattered while those of 135°/135°-shaped specimens were in good agreement despite the difference in specimen dimensions. Such a difference was discussed in terms of the relation between the magnitude of stress singularity and the microstructures of material.


2006 ◽  
Vol 983 ◽  
Author(s):  
Kim M. Archuleta ◽  
David P. Adams ◽  
Michael J. Vasile ◽  
Julia E. Fulghum

AbstractMedium energy (30 keV) focused gallium ion beam exposure of silicon results in a compressive in-plane stress with a magnitude as large as 0.4 GPa. Experiments involve uniform irradiation of thin polysilicon microcantilevers (200 micron length) over a range of dose from 1 x 1016 to 2 x 1018 ions/cm2. The radii of curvature of microcantilevers are measured using white light interferometry before and after each exposure. The residual stress is determined from these radii and other measured properties using Stoney's equation. The large residual stress is attributed to ion beam damage, microstructural changes and implantation.


2019 ◽  
Vol 8 (1) ◽  
pp. 97-111
Author(s):  
Dorothea S. Macholdt ◽  
Jan-David Förster ◽  
Maren Müller ◽  
Bettina Weber ◽  
Michael Kappl ◽  
...  

Abstract. The spatial distribution of transition metal valence states is of broad interest in the microanalysis of geological and environmental samples. An example is rock varnish, a natural manganese (Mn)-rich rock coating, whose genesis mechanism remains a subject of scientific debate. We conducted scanning transmission X-ray microscopy with near-edge X-ray absorption fine-structure spectroscopy (STXM-NEXAFS) measurements of the abundance and spatial distribution of different Mn oxidation states within the nano- to micrometer thick varnish crusts. Such microanalytical measurements of thin and hard rock crusts require sample preparation with minimal contamination risk. Focused ion beam (FIB) slicing was used to obtain ∼100–1000 nm thin wedge-shaped slices of the samples for STXM, using standard parameters. However, while this preparation is suitable for investigating element distributions and structures in rock samples, we observed artifactual modifications of the Mn oxidation states at the surfaces of the FIB slices. Our results suggest that the preparation causes a reduction of Mn4+ to Mn2+. We draw attention to this issue, since FIB slicing, scanning electron microscopy (SEM) imaging, and other preparation and visualization techniques operating in the kilo-electron-volt range are well-established in geosciences, but researchers are often unaware of the potential for the reduction of Mn and possibly other elements in the samples.


Author(s):  
Noel P. O’Dowd ◽  
Yuebao Lei

Tensile residual stresses, such as those generated by welding, act as crack opening stresses and can have a negative effect on the fatigue and fracture performance of a component. In this work the effect of representative residual stress distributions on the fracture behaviour of a ferritic steel has been examined using finite element analysis. A Gurson-type void growth model is used to model the effect of ductile tearing ahead of a crack. For the cases examined it is seen that a tensile residual stress field may lead to a reduction in the toughness of the material (as represented by the J-resistance curve). The observed difference in toughness can be linked to the different constraint levels in the specimens due to the introduction of the residual stress field and can be rationalised through the use of a two parameter, J–Q approach.


2014 ◽  
Vol 996 ◽  
pp. 8-13 ◽  
Author(s):  
Alexander J.G. Lunt ◽  
Alexander M. Korsunsky

Titanium aluminide (TiAl) is a lightweight intermetallic compound with a range of exceptional mid-to-high temperature mechanical properties. These characteristics have the potential to deliver significant weight savings in aero engine components. However, the relatively low ductility of TiAl requires improved understanding of the relationship between manufacturing processes and residual stresses in order to expand the use of such components in service. Previous studies have suggested that stress determination at high spatial resolution is necessary to achieve better insight. The present paper reports progress beyond the current state-of-the-art towards the identification of the near-surface intragranular residual stress state in cast and ground TiAl at a resolution better than 5μm. The semi-destructive ring-core drilling method using Focused Ion Beam (FIB) and Digital Image Correlation (DIC) was used for in-plane residual stress estimation in ten grains at the sample surface. The nature of the locally observed strain reliefs suggests that tensile residual stresses may have been induced in some grains by the unidirectional grinding process applied to the surface.


Sign in / Sign up

Export Citation Format

Share Document