Dielectric-tuned Diamondlike Carbon Materials for High-performance Self-aligned Graphene-channel Field Effect Transistors

2012 ◽  
Vol 1451 ◽  
pp. 185-190
Author(s):  
Susumu Takabayashi ◽  
Meng Yang ◽  
Shuichi Ogawa ◽  
Yuji Takakuwa ◽  
Tetsuya Suemitsu ◽  
...  

ABSTRACTThe ‘DLC-GFET’, a graphene field effect transistor with a diamondlike carbon (DLC) top-gate dielectric film, is presented. The DLC film was formed ‘directly’ onto the graphene channel without forming passivation interlayers using our original photoemission-assisted plasma-enhanced chemical vapor deposition (PA-CVD), where the plasma was precisely controlled by photoemission from the sample with quite low electric power to minimize plasma damage to the channel. The DLC-GFET exhibits clear ambipolar characteristics with a slightly positive shift of the neutral points (Dirac voltages). Relatively high transconductances were obtained as 14.6 (8.8) mS/mm in the n (p) channel modes, respectively, with a thick gate dielectric of 48 nm and a long gate length of 5 μm, promising vertical scaling-down to improve the high-frequency performance. The positive shift of the Dirac voltage is due to unintentional hole doping from oxygen species in the DLC film into the graphene channel, promising a minute modulation doped structure with oxygen to overcome high resistance in the access region. Hence, a DLC film deposited by PA-CVD is a candidate for the gate dielectric on graphene.

2012 ◽  
Vol 77 ◽  
pp. 270-275
Author(s):  
Susumu Takabayashi ◽  
Meng Yang ◽  
Shuichi Ogawa ◽  
Yuji Takakuwa ◽  
Tetsuya Suemitsu ◽  
...  

The ‘DLC-GFET’, a graphene-channel field effect transistor with a diamondlike carbon (DLC) top-gate dielectric film, is presented. The DLC film was formed ‘directly’ onto the graphene channel without forming passivation interlayers using our photoemission-assisted plasma-enhanced chemical vapor deposition (PA-CVD), where the plasma was precisely controlled by significant photoemission from the sample with quite low electric power, minimizing plasma damage to the channel. The DLC-GFET exhibits clear ambipolar characteristics with a slightly positive shift of the neutral points (Dirac voltages). Relatively high transconductances were obtained as 14.6 (8.8) mS/mm in the n (p) channel modes, respectively, with a thick DLC gate dielectric of 48 nm and a long gate length of 5 μm, promising vertical scaling-down to improve the high-frequency performance. The positive shift of the Dirac voltage is due to unintentional hole doping from an oxygen species like H2O in the DLC film into the graphene channel, suggesting that a modulation-doped DLC structure with a δ-doped oxygen (nitrogen) species for the p (n) mode will overcome high access resistance.


Nano Letters ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Ralf Thomas Weitz ◽  
Ute Zschieschang ◽  
Franz Effenberger ◽  
Hagen Klauk ◽  
Marko Burghard ◽  
...  

2015 ◽  
Vol 6 (32) ◽  
pp. 5884-5890 ◽  
Author(s):  
Shengxia Li ◽  
Linrun Feng ◽  
Jiaqing Zhao ◽  
Xiaojun Guo ◽  
Qing Zhang

Thermal cross-linking the bi-functional polymer thin-films at low temperature for gate dielectric application in solution processed organic field-effect transistors.


2018 ◽  
Vol 9 (1) ◽  
pp. 2 ◽  
Author(s):  
Sooji Nam ◽  
Yong Jeong ◽  
Joo Kim ◽  
Hansol Yang ◽  
Jaeyoung Jang

Here, we report on the use of a graphene oxide (GO)/polystyrene (PS) bilayer as a gate dielectric for low-voltage organic field-effect transistors (OFETs). The hydrophilic functional groups of GO cause surface trapping and high gate leakage, which can be overcome by introducing a layer of PS—a hydrophobic polymer—onto the top surface of GO. The GO/PS gate dielectric shows reduced surface roughness and gate leakage while maintaining a high capacitance of 37.8 nF cm−2. The resulting OFETs show high-performance operation with a high mobility of 1.05 cm2 V−1 s−1 within a low operating voltage of −5 V.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 33
Author(s):  
Sangheon Jeon ◽  
Pyunghwa Han ◽  
Jeonghwa Jeong ◽  
Wan Sik Hwang ◽  
Suck Won Hong

Graphene nanoribbons are a greatly intriguing form of nanomaterials owing to their unique properties that overcome the limitations associated with a zero bandgap of two-dimensional graphene at room temperature. Thus, the fabrication of graphene nanoribbons has garnered much attention for building high-performance field-effect transistors. Consequently, various methodologies reported previously have brought significant progress in the development of highly ordered graphene nanoribbons. Nonetheless, easy control in spatial arrangement and alignment of graphene nanoribbons on a large scale is still limited. In this study, we explored a facile, yet effective method for the fabrication of graphene nanoribbons by employing orientationally controlled electrospun polymeric nanowire etch-mask. We started with a thermal chemical vapor deposition process to prepare graphene monolayer, which was conveniently transferred onto a receiving substrate for electrospun polymer nanowires. The polymeric nanowires act as a robust etching barrier underlying graphene sheets to harvest arrays of the graphene nanoribbons. On varying the parametric control in the process, the size, morphology, and width of electrospun polymer nanowires were easily manipulated. Upon O2 plasma etching, highly aligned arrays of graphene nanoribbons were produced, and the sacrificial polymeric nanowires were completely removed. The graphene nanoribbons were used to implement field-effect transistors in a bottom-gated configuration. Such approaches could realistically yield a relatively improved current on–off ratio of ~30 higher than those associated with the usual micro-ribbon strategy, with the clear potential to realize reproducible high-performance devices.


2017 ◽  
Vol 28 (4) ◽  
pp. 1704780 ◽  
Author(s):  
Eul-Yong Shin ◽  
Hye Jin Cho ◽  
Sungwoo Jung ◽  
Changduk Yang ◽  
Yong-Young Noh

Sign in / Sign up

Export Citation Format

Share Document