Comparisons of the Mechanical Behaviors of Poly (3, 4-ethylenedioxythiophene) (PEDOT) and ITO on Flexible Substrates

2013 ◽  
Vol 1493 ◽  
pp. 127-132 ◽  
Author(s):  
Khalid Alzoubi ◽  
Gihoon Choi ◽  
Mohammad M. Hamasha ◽  
Atif S Alkhazali ◽  
John DeFranco ◽  
...  

ABSTRACTIndium Tin Oxide (ITO) has been widely used as a Transparent Conductive Oxide (TCO) layer in the photovoltaic solar technology because of its excellent electrical and optical properties. However, ITO is brittle, and its conductivity decreases significantly as the ITO films are exposed to stretching or bending strains especially in flexible/foldable solar cell applications. The cracks in ITO appear at very low strains which might cause failure in the conductive layer because of the combination of a very thin film of brittle ceramic material applied to a polymer substrate. Poly (3, 4-ethylenedioxythiophene), abbreviated PEDOT, is of increasing interest as a competitive candidate to ITO. PEDOT has found its way in many applications such as transparent electrode materials and transparent conductive layers in photovoltaic solar cells. In this work, the mechanical behavior of PEDOT was studied under high cycle bending fatigue in which the effects of bending diameter and bending frequency were considered and compared to ITO. High magnification optical images were used to study cracking in the PEDOT as well as the ITO layers. In flexible solar cells, the web will be exposed to folding/bending many times during manufacturing and installation. Therefore, the thin film substrate structure will be exposed to cyclic loading cyclic tensile and compressive strains. Therefore, this work was designed to mechanically fatigue the structure and study its behavior. It was found that bending diameters as well as material (PEDOT or ITO) have a great influence on the electrical conductivity of the thin films.

2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540027
Author(s):  
Yun-Hae Kim ◽  
Chang-Wook Park ◽  
Jin-Woo Lee ◽  
Dong Myung Lee

Transparent conductive oxide is a thin film to be used in numerous applications throughout the industry in general. Transparent electrode materials used in these industries are in need of light transmittance with excellent high and low electrical characteristics, substances showing the most excellent physical properties while satisfying all the characteristics such as indium tin oxide film. However, reserves of indium are very small, there is an environmental pollution problem. So the study of zinc oxide ( ZnO ) is actively carried out in an alternative material. This study analyzed the characteristics by using a direct current (DC) magnetron sputtering system. The electric and optical properties of these films were studied by Hall measurement and optical spectroscopy, respectively. When the Al target input current is 2 mA and 4 mA, it demonstrates about 80% transmittance in the range of the visible spectrum. Also, when Al target input current was 6 mA, sheet resistance was the smallest on PET substrate. The minimum resistivity is 3.96×10-3 ohm/sq.


2010 ◽  
Author(s):  
T. Söderström ◽  
D. Dominé ◽  
A. Feltrin ◽  
M. Despeisse ◽  
F. Meillaud ◽  
...  

2018 ◽  
Vol 6 (36) ◽  
pp. 9734-9741 ◽  
Author(s):  
Zhiyong Liu ◽  
Ning Wang

In this study, we have fabricated efficient polymer solar cells (PSCs) by introducing a highly conductive poly(3,4-ethylene dioxy-thiophene):poly(styrene sulfonate) (PH1000) thin film treated with a combination of ethylene glycol (EG) additive and H2SO4 solution immersion as a transparent electrode (PH1000–EG–H2SO4).


2019 ◽  
Vol 966 ◽  
pp. 398-403
Author(s):  
Yoyok Cahyono ◽  
Novita Dwi Purnamasari ◽  
Mochamad Zainuri ◽  
Suminar Pratapa ◽  
Darminto

Effect of defect - through observation of energy absorption Urbach, on deposition rate, energy band gap, and surface roughness of intrinsic thin film are investigated using Radio Frequency Plasma Enhance Chemical Vapor Deposition (RF-PECVD). Films are grown on ITO (Indium Tin Oxide) glass substrate. Analysis of energy band gap is conducted to determine changes in the structure of a thin film of a-Si:H. Energy band gap is important to determine the portion of the spectrum of sunlight that is absorbed solar cells. From the characterization using UV-Vis spectrometer and the Tauc’s plot method, the width of the resulting energy band gap is greater if the hydrogen dilution is increased. It can be shown that the increase of the hydrogen dilution, will increase the energy band gap, and the surface roughness of thin layers. Instead, the improvement of the hydrogen dilution decrease the rate of deposition and Urbach energy. It is estimated that with greater hydrogen dilution, an intrinsic thin film of a-Si:H is more conductive for more reduction in residual of band tail defects or dangling bond defects.


2019 ◽  
Vol 200 ◽  
pp. 109998 ◽  
Author(s):  
Dae-Hyung Cho ◽  
Hong Seok Jo ◽  
Woo-Jung Lee ◽  
Tae-Gun Kim ◽  
Byungha Shin ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1123 ◽  
Author(s):  
Guanggen Zeng ◽  
Xia Hao ◽  
Shengqiang Ren ◽  
Lianghuan Feng ◽  
Qionghua Wang

The application of thinner cadmium sulfide (CdS) window layer is a feasible approach to improve the performance of cadmium telluride (CdTe) thin film solar cells. However, the reduction of compactness and continuity of thinner CdS always deteriorates the device performance. In this work, transparent Al2O3 films with different thicknesses, deposited by using atomic layer deposition (ALD), were utilized as buffer layers between the front electrode transparent conductive oxide (TCO) and CdS layers to solve this problem, and then, thin-film solar cells with a structure of TCO/Al2O3/CdS/CdTe/BC/Ni were fabricated. The characteristics of the ALD-Al2O3 films were studied by UV–visible transmittance spectrum, Raman spectroscopy, and atomic force microscopy (AFM). The light and dark J–V performances of solar cells were also measured by specific instrumentations. The transmittance measurement conducted on the TCO/Al2O3 films verified that the transmittance of TCO/Al2O3 were comparable to that of single TCO layer, meaning that no extra absorption loss occurred when Al2O3 buffer layers were introduced into cells. Furthermore, due to the advantages of the ALD method, the ALD-Al2O3 buffer layers formed an extremely continuous and uniform coverage on the substrates to effectively fill and block the tiny leakage channels in CdS/CdTe polycrystalline films and improve the characteristics of the interface between TCO and CdS. However, as the thickness of alumina increased, the negative effects of cells were gradually exposed, especially the increase of the series resistance (Rs) and the more serious “roll-over” phenomenon. Finally, the cell conversion efficiency (η) of more than 13.0% accompanied by optimized uniformity performances was successfully achieved corresponding to the 10 nm thick ALD-Al2O3 thin film.


2020 ◽  
Vol 12 (13) ◽  
pp. 15456-15463 ◽  
Author(s):  
Tao Zhu ◽  
Yongrui Yang ◽  
Xiang Yao ◽  
Zixu Huang ◽  
Lei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document