Influence of Pulsed Gas Feeding on Surface Defects and Mechanical Properties of Ti/TiN Multilayered Films Deposited by Ion Beam Assisted Magnetron Sputtering

2014 ◽  
Vol 488-489 ◽  
pp. 48-52
Author(s):  
Zhi Qiang Fu ◽  
Yi Ren ◽  
Cheng Biao Wang ◽  
Wen Yue ◽  
Song Sheng Lin

The influence of sputtering power, N2 flow rate, ion current and substrate temperature on the monolayer TiN films deposited by ion beam assisted magnetron sputtering and the effect of the on-off ratio and deposition period on the multilayered Ti/TiN films was studied. It was found that the key factors affecting surface defects of monolayer TiN films are sputtering power and N2 flow rate while ion current is the most significant factor affecting the hardness of monolayer TiN films. The surface defects can be greatly inhibited by pulsed gas feeding. The adhesion and hardness of the multilayered Ti/TiN films is improved with increasing on-off ratio or decreasing deposition period; the on-off ratio has a negligible effect on the surface defects of the multilayered Ti/TiN films while the surface defects of the multilayered Ti/TiN films become more obvious at a long deposition period.

2010 ◽  
Vol 93-94 ◽  
pp. 578-582
Author(s):  
A. Pankiew ◽  
Win Bunjongpru ◽  
N. Somwang ◽  
S. Porntheeraphat ◽  
Sirapat Pratontep ◽  
...  

Titanium nitride (TiN) film has been widely used as a diffusion barrier layer for VLSI contact metallization because TiN is an excellent barrier against inter-diffusion between Al and Si substrate or silicide. In this work, we studied the properties of TiN films deposited by DC magnetron sputtering with varying N2:Ar flow rate ratio in order to optimize growth conditions and film properties provided for Al diffusion barrier purpose. The TiN films were deposited at the constant pressure level and sputtering time. The crystalline orientation, composition and electrical properties of deposited TiN films were characterized by XRD, AES-depth profile and Four Point Probe measurement, respectively. The XRD results show that the deposited TiN film has two preferred orientations of TiN(111) and TiN(200) planes. The highest intensity of the TiN(111) plane was obtained when the N2:Ar flow rate ratio was 3:1. The electrical resistivity was increased when the N2:Ar flow rate ratio was decreased. The minimum electrical resistivity is 127.8 μΩ-cm when the N2:Ar flow rate ratio is 3:1.


2014 ◽  
Vol 9 (3) ◽  
pp. 398-408
Author(s):  
Woonou Cha ◽  
Wan Myung Chun ◽  
Byoung Soo Kim ◽  
Miyoung Choi ◽  
Jinman Kim

To construct an energy saving airflow-controlling system for Doyang sewage treatment plant, the factors affecting airflow of the influent was analyzed in this study. This research analyzed the operation data of Doyang sewage treatment plant for 912 days. As a result, the key factors deciding the optimum airflow were found to be temperature, F/M ratio, the loading rate of BOD5 and T-N of the influent. Among the factors, the temperature of the influent had the most decisive effect on the aeration volume. The result showed that an increase of 1 °C of the influent requires 45.3 m3/h airflow. Since the factors affected by seasons like flow rate, F/M ratio and MLSS affect airflow required of blowers, and the change of temperature is considered to intensify the change of airflow even more. Therefore, it is preferable to consider flow rate, F/M ratio, MLSS and water temperature altogether than considering only one factor when deciding airflow of blowers. The results of this research can be utilized as indicators when designing energy saving system for sewage treatment plants.


2013 ◽  
Vol 1575 ◽  
Author(s):  
Mitsuaki Takeuchi ◽  
Takuya Hamaguchi ◽  
Hiromichi Ryuto ◽  
Gikan H Takaoka

ABSTRACTIonic liquid (IL) ion sources with different emitter tip materials and tip numbers were developed and examined on ion beam characteristics with respect to its ILs wettability. As a result of ion current measurements, the most stable emission current was obtained for the graphite emitter tip and the ion current increased with increase of the tip number. The results indicate that the emitter wettability corresponding to the supplying flow rate and the number of emission site play an important role to stabilize and increase the beam current.


Author(s):  
Wenbin Huang ◽  
Juan Yang ◽  
Haibo Meng ◽  
Xu Xia ◽  
Yuliang Fu ◽  
...  

To increase the ion current from the ion source is an important way to improve the performance of the electron cyclotron resonance ion thruster(ECRIT). The ion migration distance, magnetic topology and propellant have a close influence on the extracting ion beam. This influence is studied through both magnetic circuit structure calculation and experiments, by using an ion source with different gate mounting positions and magnet lengths. Experimental results show that the distribution of the ECR region will be discontinuous when the length of the magnet is too short. This will greatly reduce the performance of the ion source. To increase the length of the magnet is beneficial to the beam emission at high gas flow rate, but it reduces the beam emission at low gas flow rate. The effect of the ion migration distance on the ion beam is related to the plasma density in the ion source. When the gas flow rate is low, a longer gate mounting ring is beneficial to increase the ion current. When the gas flow rate is high, the different magnetic topology will cause the gate mounting ring which influences on the ion current. At low gas flow conditions, xenon gas can significantly improve the discharge stability of the ion source and increase the ion current. However, at high gas flow rate, the concentration effect of the neutral particles is too strong that affects the energy accumulation process of the free electrons. This would cause the decrease in the ion current.


2018 ◽  
Vol 32 (16) ◽  
pp. 1850195 ◽  
Author(s):  
J. Zhang ◽  
R. Jin ◽  
Q. Y. Liu ◽  
T. Zhao ◽  
K. Zhao ◽  
...  

Epitaxial growth of thin films is an effective approach to minimize the contribution of bulk carriers for topological insulator (TI) Bi2Se3. Parameters used in preparation process are key factors for growing high quality thin films, especially for TI films. In this paper, magnetron sputtering was used for growing Bi2Se3 thin films on Si (100) substrates. Different working pressure and sputtering power were investigated. High-quality films could be obtained under relatively low pressure and low power. Linear and nonsaturated high-field linear magnetoresistance (LMR) was observed in high-quality films.


Author(s):  
M. Spector ◽  
A. C. Brown

Ion beam etching and freeze fracture techniques were utilized in conjunction with scanning electron microscopy to study the ultrastructure of normal and diseased human hair. Topographical differences in the cuticular scale of normal and diseased hair were demonstrated in previous scanning electron microscope studies. In the present study, ion beam etching and freeze fracture techniques were utilized to reveal subsurface ultrastructural features of the cuticle and cortex.Samples of normal and diseased hair including monilethrix, pili torti, pili annulati, and hidrotic ectodermal dysplasia were cut from areas near the base of the hair. In preparation for ion beam etching, untreated hairs were mounted on conducting tape on a conducting silicon substrate. The hairs were ion beam etched by an 18 ky argon ion beam (5μA ion current) from an ETEC ion beam etching device. The ion beam was oriented perpendicular to the substrate. The specimen remained stationary in the beam for exposures of 6 to 8 minutes.


Shinku ◽  
1995 ◽  
Vol 38 (3) ◽  
pp. 339-342 ◽  
Author(s):  
Yasuki AIHARA ◽  
Yuko HIROHATA ◽  
Tomoaki HINO ◽  
Toshiro YAMASHINA

Author(s):  
Max L. Lifson ◽  
Carla M. Chapman ◽  
D. Philip Pokrinchak ◽  
Phyllis J. Campbell ◽  
Greg S. Chrisman ◽  
...  

Abstract Plan view TEM imaging is a powerful technique for failure analysis and semiconductor process characterization. Sample preparation for near-surface defects requires additional care, as the surface of the sample needs to be protected to avoid unintentionally induced damage. This paper demonstrates a straightforward method to create plan view samples in a dual beam focused ion beam (FIB) for TEM studies of near-surface defects, such as misfit dislocations in heteroepitaxial growths. Results show that misfit dislocations are easily imaged in bright-field TEM and STEM for silicon-germanium epitaxial growth. Since FIB tools are ubiquitous in semiconductor failure analysis labs today, the plan view method presented provides a quick to implement, fast, consistent, and straightforward method of generating samples for TEM analysis. While this technique has been optimized for near-surface defects, it can be used with any application requiring plan view TEM analysis.


Sign in / Sign up

Export Citation Format

Share Document