Cu2ZnSnSe4 thin films prepared by selenization of precursor evaporated from Cu2ZnSnSe4 and Na2Se

2014 ◽  
Vol 1603 ◽  
Author(s):  
Mitsuki Nakashima ◽  
Toshiyuki Yamaguchi ◽  
Masanobu Izaki

ABSTRACTCu2ZnSnSe4 thin films were prepared by using the synthesized Cu2ZnSnSe4 ingot and Na2Se powder at various Na2Se/Cu2ZnSnSe4 mole ratio as evaporation materials for selenization process. From EPMA analysis, the composition was approximately constant even if the Na2Se/Cu2ZnSnSe4 mole ratio increased. X-ray diffraction studies revealed that the thin films had a kesterite Cu2ZnSnSe4 structure and the foreign phases disappeared with increasing the Na2Se/Cu2ZnSnSe4 mole ratio. The Na2Se addition enhanced to grow thin films having a close-packed structure and columnar grains. The values of Voc and Isc in Cu2ZnSnSe4 thin film solar cells increased with increasing the Na2Se/Cu2ZnSnSe4 mole ratio.

2013 ◽  
Vol 418 ◽  
pp. 238-241
Author(s):  
Li Zen Hsieh ◽  
Xi Ming Duan ◽  
Ming Jer Jeng

Two-step growth method was used for CuInGaSe2,(CIGS) absorption layer in this study. The layer was first deposited by thermal evaporator to use indium and gallium sauces at a vacuum of 5 × 10-6 torr and secondly, the deposited thin film was enclosed in a quartz cartridge for the first selenization. The second selenization process was coated by copper and then annealed again in a furnace. Finding best precursor for thin film solar cells was analyzed by scanning electron microscope (SEM), X-ray diffraction analyzer (XRD) and energy dispersive spectrometer (EDS).


2003 ◽  
Vol 775 ◽  
Author(s):  
Donghai Wang ◽  
David T. Johnson ◽  
Byron F. McCaughey ◽  
J. Eric Hampsey ◽  
Jibao He ◽  
...  

AbstractPalladium nanowires have been electrodeposited into mesoporous silica thin film templates. Palladium continually grows and fills silica mesopores starting from a bottom conductive substrate, providing a ready and efficient route to fabricate a macroscopic palladium nanowire thin films for potentially use in fuel cells, electrodes, sensors, and other applications. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicate it is possible to create different nanowire morphology such as bundles and swirling mesostructure based on the template pore structure.


MRS Advances ◽  
2016 ◽  
Vol 1 (39) ◽  
pp. 2711-2716 ◽  
Author(s):  
V. Vasilyev ◽  
J. Cetnar ◽  
B. Claflin ◽  
G. Grzybowski ◽  
K. Leedy ◽  
...  

ABSTRACTAlN thin film structures have many useful and practical piezoelectric and pyroelectric properties. The potential enhancement of the AlN piezo- and pyroelectric constants allows it to compete with more commonly used materials. For example, combination of AlN with ScN leads to new structural, electronic, and mechanical characteristics, which have been reported to substantially enhance the piezoelectric coefficients in solid-solution AlN-ScN compounds, compared to a pure AlN-phase material.In our work, we demonstrate that an analogous alloying approach results in considerable enhancement of the pyroelectric properties of AlN - ScN composites. Thin films of ScN, AlN and Al1-x ScxN (x = 0 – 1.0) were deposited on silicon (004) substrates using dual reactive sputtering in Ar/N2 atmosphere from Sc and Al targets. The deposited films were studied and compared using x-ray diffraction, XPS, SEM, and pyroelectric characterization. An up to 25% enhancement was observed in the pyroelectric coefficient (Pc = 0.9 µC /m2K) for Sc1-xAlxN thin films structures in comparison to pure AlN thin films (Pc = 0.71 µC/m2K). The obtained results suggest that Al1-x ScxN films could be a promising novel pyroelectric material and might be suitable for use in uncooled IR detectors.


1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2013 ◽  
Vol 710 ◽  
pp. 170-173
Author(s):  
Lian Ping Chen ◽  
Yuan Hong Gao

It is hardly possible to obtain rare earth doped CaWO4thin films directly through electrochemical techniques. A two-step method has been proposed to synthesize CaWO4:(Eu3+,Tb3+) thin films at room temperature. X-ray diffraction, energy dispersive X-ray analysis, spectrophotometer were used to characterize their phase, composition and luminescent properties. Results reveal that (Eu3+,Tb3+)-doped CaWO4films have a tetragonal phase. When the ratio of n (Eu)/n (Tb) in the solution is up to 3:1, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Tb element; on the contrary, when the ratio in the solution is lower than 1:4, CaWO4:(Eu3+,Tb3+) thin film will be enriched with Eu element. Under the excitation of 242 nm, sharp emission peaks at 612, 543, 489 and 589 nm have been observed for CaWO4:(Eu3+,Tb3+) thin films.


2010 ◽  
Vol 93-94 ◽  
pp. 231-234
Author(s):  
B. Hongthong ◽  
Satreerat K. Hodak ◽  
Sukkaneste Tungasmita

Strontium substituted hydroxyapatite(SrHAp) were fabricated both in the form of powder as reference and thin film by using inorganic precursor reaction. The sol-gel process has been used for the deposition of SrHAp layer on stainless steal 316L substrate by spin coating technique, after that the films were annealed in air at various temperatures. The chemical composition of SrHAp is represented (SrxCa1-x)5(PO4)3OH, where x is equal to 0, 0.5 and 1.0. Investigations of the phase structure of SrHAp were carried out by using X-ray diffraction technique (XRD). The results showed that strontium is incorporated into hydroxyapatite where its substitution for calcium increases in the lattice parameters, and Sr3(PO4)2 can be detected at 900°C. The SEM micrographs showed that SrHAp films exhibited porous structure before develop to a cross-linking structure.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Gyu-bong Cho ◽  
Tae-hoon Kwon ◽  
Tae-hyun Nam ◽  
Sun-chul Huh ◽  
Byeong-keun Choi ◽  
...  

LiNiO2thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2thin film. The ZrO2-coated LiNiO2thin film provided an improved discharge capacity compared to bare LiNiO2thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2coating layer.


2005 ◽  
Vol 879 ◽  
Author(s):  
M. Abid ◽  
C. Terrier ◽  
J-P Ansermet ◽  
K. Hjort

AbstractFollowing the theory, ferromagnetism is predicted in Mn- doped ZnO, Indeed, ferromagnetism above room temperature was recently reported in thin films as well as in bulk samples made of this material. Here, we have prepared Mn doped ZnO by electrodeposition. The samples have been characterized by X-ray diffraction and spectroscopic methods to ensure that the dopants are substitutional. Some samples exhibit weak ferromagnetic properties at room temperature, however to be useful for spintronics this material need additional carriers provided by others means.


2005 ◽  
Vol 876 ◽  
Author(s):  
Patrick Huber ◽  
Klaus Knorr

AbstractWe present a selection of x-ray diffraction patterns of spherical (He, Ar), dumbbell- (N2, CO), and chain-like molecules (n-C9H20, n-C19H40) solidified in nanopores of silica glass (mean pore diameter 7nm). These patterns allow us to demonstrate how key principles governing crystallization have to be adapted in order to accomplish solidification in restricted geometries. 4He, Ar, and the spherical close packed phases of CO and N2 adjust to the pore geometry by introducing a sizeable amount of stacking faults. For the pore solidified, medium-length chainlike n-C19H40 we observe a close packed structure without lamellar ordering, whereas for the short-chain C9H20 the layering principle survives, albeit in a modified fashion compared to the bulk phase.


2011 ◽  
Vol 383-390 ◽  
pp. 822-825
Author(s):  
Ping Luan ◽  
Jian Sheng Xie ◽  
Jin Hua Li

Using magnetron sputtering technology, the CuInSi thin films were prepared by multilayer synthesized method. The structure of CuInSi films were detected by X-ray diffraction(XRD), the main crystal phase peak is at 2θ=42.458°; The resistivity of films were measured by SDY-4 four-probe meter; The conductive type of the films were tested by DLY-2 conductivity type testing instrument. The results show that the annealing temperature and time effect on the crystal resistivity and crystal structure greatly.


Sign in / Sign up

Export Citation Format

Share Document