Silver Nanocrystals at Cavities Created by High Energy Helium Implantation in Bulk Silicon

2007 ◽  
Vol 994 ◽  
Author(s):  
Rachid El Bouayadi ◽  
Gabrielle Regula ◽  
Maryse Lancin ◽  
Eduardo Larios ◽  
Bernard Pichaud ◽  
...  

AbstractHigh resolution transmission electron microscopy observations show for the first time the presence of two orientations of pure silver precipitates in nanocavities induced in bulk silicon by implantation at 1.6 MeV with a dose of 5×1016 He+ cm−2 and a two hour annealing at 1050°C. These precipitates were called A and B to refer to the two well-known nickel silicide (NiSi2) precipitates or Ag films on a {111} silicon surface. Thus, the A precipitate corresponds to a growth of silver nanocrystal on {111} cavity walls in epitaxy with the Si matrix with an orientation relationship Ag(-111)[211]||Si(-111)[211]. The B precipitate develops on a {111} plane parallel to a {111} cavity wall as well, but in a twin orientation with respect to the Si matrix defined by Ag(-111)[211]||Si(-111)[-2-1-1]. The Ag nanocrystals have a size ranging from a few nm to 50 nm. Most of them have the faceted-shape characteristic of “clean” cavities. They are either A precipitates or they contain alternatively A and B bands in good agreement with both the low stacking fault energy of silver and the two types of nanocrystal orientations obtained by Ag deposition on (111) Si substrate at room temperature. Some Ag precipitates were also found at dislocations located at the He+ projection range, but these trapping sites were found thermally unstable as compared to the cavity ones. Indeed, during a second identical annealing, the precipitates grow in cavities whereas they fade at dislocations.

1981 ◽  
Vol 10 ◽  
Author(s):  
Eliezer Dovid Richmond ◽  
Alvin R. Knudson ◽  
Tom J. Magee

ABSTRACTThe structural defect properties of silicon on sapphire (SOS) are investigated with transmission electron microscopy and Rutherford backscattering. The results for as-grown SOS films are compared with SOS films which have been implanted with 1016 Si+ ions cm− 2 at an energy of 170 keV and annealed at 600°C (1 h) and 1000°C (18 h). The regrowth proceeds from the silicon surface even though it is noncrystalline as determined by reflection high energy electron diffraction. The structural defects consist of stacking faults, microtwins and dislocations. The stacking faults and microtwins show a dramatic reduction with processing. The nature of the structural defects at the interface after implantation and annealing is reported here for the first time. It is different from the bulk of the silicon film and consists of a layer of dislocation loops of various sizes and short dislocation lines which follow the interface and curve upwards. This behavior is analogous with the secondary defects generated in self-implanted bulk silicon. Suggestions, based on results from bulk silicon implantation, are made for optimizing the ion implantation furnace annealing process.


Batteries ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 60 ◽  
Author(s):  
Caihong Liu ◽  
Leon Shaw

In this study, we have proposed a novel concept of hybrid flow batteries consisting of a molten Na-Cs anode and an aqueous NaI catholyte separated by a NaSICON membrane. A number of carbonaceous electrodes are studied using cyclic voltammetry (CV) for their potentials as the positive electrode of the aqueous NaI catholyte. The charge transfer impedance, interfacial impedance and NaSICON membrane impedance of the Na-Cs ‖ NaI hybrid flow battery are analyzed using electrochemical impedance spectroscopy. The performance of the Na-Cs ‖ NaI hybrid flow battery is evaluated through galvanostatic charge/discharge cycles. This study demonstrates, for the first time, the feasibility of the Na-Cs ‖ NaI hybrid flow battery and shows that the Na-Cs ‖ NaI hybrid flow battery has the potential to achieve the following properties simultaneously: (i) An aqueous NaI catholyte with good cycle stability, (ii) a durable and low impedance NaSICON membrane for a large number of cycles, (iii) stable interfaces at both anode/membrane and cathode/membrane interfaces, (iv) a molten Na-Cs anode capable of repeated Na plating and stripping, and (v) a flow battery with high Coulombic efficiency, high voltaic efficiency, and high energy efficiency.


1989 ◽  
Vol 160 ◽  
Author(s):  
L. Luo ◽  
G. A. Smith ◽  
W. M. Gibson

AbstractThe initial growth stages of Ni on clean B-doped Si(111) were studied at room temperature using high energy Ion channeling and Monte Carlo computer simulations of the Ni/Si interface. The results suggest that the first monolayer of Ni atoms diffuse to reaction sites in the fourth layer of the Si(111) substrate where nickel suicide growth begins. Further Ni deposition (up to ~ 3 ML) leads to the growth of NiSi2 which is thought to be a diffusion barrier that terminates further formation of NiSi2 at room temperature.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341018 ◽  
Author(s):  
J. M. LIANG ◽  
L. L. HE ◽  
Z. Q. SHEN ◽  
D. L. ZHANG

Europium doped CaAl 2 O 4 nanocones have been grown first time by thermal evaporation method. Scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to analyze the morphology, size and crystal structure of the nanocones. The body of the nanocones are about 2–20 μm in length and their diameters are 200 nm to 1 μm at one end and tapers off to a ~ 40–200 nm at the tip end. The as-synthesized nanocones are single crystalline in monoclinic structure and grow along the [010] direction and the normal direction of (100) and (001). The room temperature photoluminescence (PL) and cathodoluminescence (CL) spectrum measurement reveals that CaAl 2 O 4: Eu 2+ nanocones emit light at about 440 nm.


2013 ◽  
Vol 774-776 ◽  
pp. 811-815 ◽  
Author(s):  
Jian Ma

V3+ions doped YAG crystals were grown using the Czochralski method in a highly pure argon atmosphere. The transmission spectrum of trivalent vanadium in YAG crystal has been measured at room temperature. Eight bands were observed in which two bands centered at 690nm (14493cm-1) and 1490nm (6711cm-1) are reported for the first time. By using the crystal-field theory and introducing the average covalent factor model, we also presented the theoretical calculations of the energy level splitting of tetrahedrally coordinated V3+impurity systems in YAG crystal. These calculation results are in good agreement with the optical experiment data.


2020 ◽  
Vol 20 (3) ◽  
pp. 1941-1945 ◽  
Author(s):  
Suboohi Shervani ◽  
Anshul Gupta ◽  
Sri Sivakumar ◽  
Kantesh Balani ◽  
Anandh Subramaniam

Gas filled Pd nanocontainers can serve as model nanochambers for reaction and phase equilibria studies. In the current study, palladium hollow spheres (PdHS) filled with oxygen are brought in intimate contact with hydrogen filled PdHS at room temperature (with internal pressure in both the spheres at 20 bar). The molecular hydrogen gets chemisorbed in the Pd shell and further diffuses into the oxygen filled sphere. The rapid reaction of hydrogen with oxygen in the inner wall of the oxygen filled sphere leads to a nanoexplosion, with the formation of water. This explosion results in either the complete breakage of the nanoshell or the formation of connected shells via the rupture of the internal wall connecting the shells. Transmission electron microscopy and Raman spectroscopy have been used to establish the sequence of processes. Further, the water in the nanochambers is cooled below sub-zero temperature to crystallize ice. This phenomenon is observed for the first time at room temperature.


2010 ◽  
Vol 638-642 ◽  
pp. 2938-2943 ◽  
Author(s):  
A.V. Mogilatenko ◽  
Frank Allenstein ◽  
M.A. Schubert ◽  
Meiken Falke ◽  
G. Beddies ◽  
...  

Thin Ni/Al and Ni/Ga layers of different atomic ratios were codeposited onto Si(001) at room temperature followed by subsequent annealing. Influence of annealing temperature on morphology and composition of ternary disilicide NiSi2-xAlx and NiSi2-xGax layers was investigated by transmission electron microscopy. Addition of Al or Ga leads to a decrease of the disilicide formation temperature from 700°C down to at least 500°C. Depending on the composition closed, uniformly oriented NiSi2-xAlx and NiSi2-xGax layers were observed after annealing at 900°C, whereas reaction of a pure Ni film with Si leads to the island formation with a mixture of A- and B-type orientations.


2001 ◽  
Vol 680 ◽  
Author(s):  
Marie F. Beaufort ◽  
Erwan Oliviero ◽  
Marie L. David ◽  
Alain Declémy ◽  
Christian Blanchard ◽  
...  

ABSTRACT1.6 MeV He+ ions were implanted at room temperature into (0001) 4H-SiC at a dose of 1×1017 cm−2 and then annealed at 1500°C for 30 min. Small bubbles are readily observed in the as-implanted sample but also an amorphous layer. After a 1500°C annealing, recrystallization of the amorphous state occurs and large bubbles or cavities are observed. However their shape strongly depends of their location inside the buried layer. The recrystallization consists of polytypisme, 4H-SiC growth along the c-direction from the substrate, columnar 4H-SiC and epitaxial growth of 3C-SiC.


1988 ◽  
Vol 128 ◽  
Author(s):  
S. M. Myers ◽  
W. A. Swansiger ◽  
D. M. Follstaedt

ABSTRACTThe interactions of deuterium (D) with oxygen in Cu and Au were examined using ion implantation, nuclear-reaction analysis, and transmission electron microscopy. In Cu, the reduction of Cu2O precipitates by D to produce D20 was shown to occur readily down to room temperature, at a rate limited by the transport of D to the oxides. The reverse process of D2O dissociation was characterized for the first time below the temperature range of steam blistering. The evolution of the Cu(D)-Cu2O-D2O system was shown to be predicted by a newly extended transport formalism encompassing phase changes, trapping, diffusion, and surface release. In Au, buried 0 sinks were used to measure the permeability of D at 573 and 373 K, thereby extending the range of measured permeabilities downward by about six orders or magnitude.


1991 ◽  
Vol 256 ◽  
Author(s):  
J. F. Harvey ◽  
H. Shen ◽  
R. A. Lux ◽  
M. Dutita ◽  
J. Pamulapati ◽  
...  

ABSTRACTRaman spectra from electrochemically etched porous silicon are correlated with photoluminescence (PL) data from the same spots of the sample. This correlation is consistent with optical properties of quantum confinement. The dielectric constant determined from angle resolved ellipsometry gives values far below that of bulk silicon. This reduction is due to the combined effects of voids as well as quantum confinement. The PL spectrum shows a weak high energy peak around 2.8eV in addition to the strong broad peak at 1.5 to 1.9eV. The temperature dependence of PL resembles that of bound excitons such as Si:S, having a thermal dissociation energy of 100 meV near room temperature. The radiation life time changes from tens of microseconds near room temperature to a few milliseconds at liquid helium temperatures. The rapid increase in lifetime and decrease in PL intensity at low temperatures indicates that phonons are probably involved.


Sign in / Sign up

Export Citation Format

Share Document