The Nucleation and Propagation of Misfit Dislocations aear the Critical Thickness in Ge-Si Strained Epilayers

1987 ◽  
Vol 104 ◽  
Author(s):  
E. P. Kvam ◽  
D. J. Eaglesham ◽  
D. M. Maher ◽  
C. J. Humphreys ◽  
J. C. Bean ◽  
...  

ABSTRACTThe nucleation and propagation of misfit dislocations in Ge-Si strained epilayers on (100) Si have been investigated using transmission electron microscopy and X-ray diffraction topography at low lattice parameter mismatch (˜ 0.8%). Misfit dislocations nucleate as half loops which are predominantly unfaulted (> 90%) at the advancing growth interface. Under the driving force of the epilayer strain, unfaulted half loops glide and expand on inclined { 111 }planes toward the heterointerface (i.e. substrate/epilayer interface). These unfaulted half loops consist of a 60°-dislocation segment which lies along < 011> in a plane parallel to the heterointerface (i.e. (100)) and this segment is connected to the growth interface by two screw dislocation segments which both lie on the same inclined {111} glide plane. As 60° dislocations reach the heterointerface on each of the four inclined {111} variants, they form an orthogonal array of misfit dislocations which lie along [011] and [011]. At higher lattice parameter mismatch (˜ 2%), there appear to be some important changes in the dislocation behavior and these changes result in orthogonal arrays of heterointerface dislocations which are predominantly edge type (i.e. 90°dislocations).

2005 ◽  
Vol 475-479 ◽  
pp. 2453-2456
Author(s):  
Y. Zhang ◽  
Y. Tsushio ◽  
Hirotoshi Enoki ◽  
Etsuo Akiba

Novel Mg-Co binary alloys with BCC (body-centered cubic) structure have been successfully synthesized by means of mechanical alloying technique. The formation of BCC structure was confirmed by X-ray diffraction and transmission electron microscopy. Mg-Co alloys were found in the range of Co concentration between 37 and 80 atomic %. All the Mg-Co alloys synthesized absorbed hydrogen below 373K. The maximum hydrogen capacity of these alloys reaches 2.7 mass %. However, desorption of hydrogen at 373 K has not been observed yet. Mg- Co-X (X = B and Ni) ternary alloys with BCC structure have also been synthesized. The lattice parameter of both alloys is lower than that of Mg-Co binary alloys, meanwhile the maximum hydrogen content of both alloys also decreased.


1997 ◽  
Vol 12 (1) ◽  
pp. 161-174 ◽  
Author(s):  
W. Staiger ◽  
A. Michel ◽  
V. Pierron-Bohnes ◽  
N. Hermann ◽  
M. C. Cadeville

We find that the [Ni3.2nmPt1.6nm] × 15 and [Ni3.2nmPt0.8nm] × 15 multilayers are semicoherent and display a columnar morphology. From both the period of the moir’e fringes and the positions of the diffraction peaks in electronic (plan-view and crosssection geometries) and x-ray diffraction patterns, one deduces that the nickel is relaxed (at least in the error bars of all our measurements), whereas the platinum remains slightly strained (≈−1%). The interfaces are sharp; no intermixing takes place giving rise to neat contrasts in transmission electron microscopy (TEM) and to high intensities of the superlattice peaks in the growth direction in both diffraction techniques. The relaxation of the interfacial misfit occurs partially through misfit dislocations, partially through the strain of platinum. A quasiperiodic twinning occurs at the interfaces, the stacking fault which forms the twin being the most often located at the interface Pt/Ni, i.e., when a Pt layer begins to grow on the Ni layer. The simulation of the θ/2θ superlattice peak intensities takes into account the columnar microstructure. It shows that the roughness is predominantly at medium scale with a fluctuation of about 12.5% for Ni layers and negligible for Pt layers.


1995 ◽  
Vol 401 ◽  
Author(s):  
P. A. Langjahr ◽  
T. Wagner ◽  
M. RÜhle ◽  
F. F. Lange

AbstractCubic and pseudocubic perovskite films on perovskite substrates are used to study the influence of the lattice mismatch on the epitaxial growth of thin films on substrates of the same structure. For the growth of the films, a metalorganic decomposition route (MOD) using 2-ethylhexanoates and neodecanoates as precursors, was developed. The decomposition of the precursors was investigated with thermogravimetric analysis (TGA) and x-ray diffraction (XRD). The films were spin-coated on (001)-oriented SrTiO3- and LaAlO3-substrates, pyrolyzed and afterwards annealed between 600°C and 1200°C. XRD-nvestigations and conventional transmission electron microscopy (CTEM) show, that epitaxial films with the orientation relationship [100](001) film ║ [100](001) substrate can be grown. With XRD, it could be shown, that not only ternary oxide films (SrZrO3, BaZrO3 and BaCeO3), but also perovskite solid solution films (SrTi0.5Zr0.5O3and BaCe0.5Zr0.5O3) can be prepared. Strong interdiffusion, detected by a shift of the film lattice parameter towards the substrate lattice parameter was found in SrZrO3- and BaZrO3-films on SrTiO3, annealed at temperatures above 1050°C. High resolution electron microscopy (HREM) studies of SrZrO3 on SrTiO3 show that a crystalline semicoherent interface with a periodical array of misfit dislocations is present.


1992 ◽  
Vol 7 (4) ◽  
pp. 888-893 ◽  
Author(s):  
M. Sherif El-Eskandarany ◽  
K. Sumiyama ◽  
K. Aoki ◽  
K. Suzuki

Nonequilibrium titanium-nitride alloy powders have been fabricated by a high energetic ball mill under nitrogen gas flow at room temperature and characterized by means of x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Initial hcp titanium is completely transformed to nonequilibrium-fcc Ti–N after 720 ks of the milling time. The fcc Ti–N phase is stable at relatively low temperature and transforms at 855 K to Ti2N and δ phases. At the final stage of milling, the particle- and grain-sizes of alloy powders are 1 mm and 5 nm, respectively, and the lattice parameter is 0.419 nm.


1993 ◽  
Vol 319 ◽  
Author(s):  
P.J. Dugdale ◽  
R.C. Pond ◽  
S.J. Barnett

AbstractThe state of deformation in epitaxial layers of InGaAs grown by MBE on GaAs substrates has been determined using high resolution X-ray diffraction. This method enables the strains and rigid body rotations which occur in the layers to be measured and these are described by means of a tensor. Layers of different thicknesses have been grown on substrates whose dislocation densities differ by three orders of magnitude in order to assess the influence of this parameter on layer relaxation through the motion of misfit dislocations to the interface. Transmission electron microscopy has also been used to provide additional information on the relaxations.


2013 ◽  
Vol 46 (4) ◽  
pp. 868-873 ◽  
Author(s):  
Peter Zaumseil ◽  
Grzegorz Kozlowski ◽  
Yuji Yamamoto ◽  
Markus Andreas Schubert ◽  
Thomas Schroeder

On the way to integrate lattice mismatched semiconductors on Si(001), the Ge/Si heterosystem was used as a case study for the concept of compliant substrate effects that offer the vision to be able to integrate defect-free alternative semiconductor structures on Si. Ge nanoclusters were selectively grown by chemical vapour deposition on Si nano-islands on silicon-on-insulator (SOI) substrates. The strain states of Ge clusters and Si islands were measured by grazing-incidence diffraction using a laboratory-based X-ray diffraction technique. A tensile strain of up to 0.5% was detected in the Si islands after direct Ge deposition. Using a thin (∼10 nm) SiGe buffer layer between Si and Ge the tensile strain increases to 1.8%. Transmission electron microscopy studies confirm the absence of a regular grid of misfit dislocations in such structures. This clear experimental evidence for the compliance of Si nano-islands on SOI substrates opens a new integration concept that is not only limited to Ge but also extendable to semiconductors like III–V and II–VI materials.


MRS Bulletin ◽  
1990 ◽  
Vol 15 (9) ◽  
pp. 38-41 ◽  
Author(s):  
I.K. Robinson

An interface is an internal surface, the boundary between two media which may be crystalline, amorphous solid, or liquid. Its close similarity with a surface, a solid-vacuum boundary, suggests that many of the powerful techniques available for studying surfaces might be applied to the interface structure problem. The extent to which this is possible is the subject of this article.The techniques to be discussed in this article include low energy electron diffraction (LEED), medium energy ion scattering (MEIS), x-ray diffraction, and x-ray reflectivity. (The most widely used method, transmission electron microscopy (TEM), is the subject of a separate article in this issue of the MRS BULLETIN.) To summarize what we will find, surface methods were developed to be nonpenetrating in order to have surface sensitivity. This works against us in the interface situation by requiring the use of extremely thin samples, at least on one side of the interface. This means special handling of samples in some cases and raises the possibility of artifac-tual results. Of the three methods, x-ray diffraction is the most penetrating and least surface sensitive; it probably has the greatest potential for widespread use in interface science.This article defines structure as “atomic structure” for this purpose: we are interested in the coordinates of atoms at the interface and their relation to bulk structures on one or both sides. For this reason, we will consider only interfaces that are crystalline on at least one side. Since crystals are by far our strongest structural reference point, much less can be said about other interfaces. We will also consider the morphology of an interface, defined as the boundary of the crystal(s) that demarcates the interface, also at the atomic level. This is most apparent in the form of interface roughness. The roles of strain and misfit dislocations in interface formation, also studied by these techniques, are outside the scope of this article.


1999 ◽  
Vol 14 (11) ◽  
pp. 4426-4430 ◽  
Author(s):  
Dmitri V. Louzguine ◽  
Akihisa Inoue

Crystallization of the Ti45Ni20Cu25Sn5Zr5 alloy has been studied by means of scanning differential calorimetry, x-ray diffraction, and conventional and high-resolution transmission electron microscopy. The first stage at about 750–800 K is related to the primary crystallization of the Ti8Ni3Cu3SnZr metastable phase having Im3m body-centered-cubic structure with a lattice parameter of a = 0.3069 nm followed by precipitation of the secondary dotlike phase precipitates on its boundaries. The activation energy for the first exothermic reaction determined by Kissinger analysis was found to be 310 kJ/mol. CuTi, Ni2TiZr, and an unknown phase are formed during long-term annealing at high (more than 850 K) temperature.


2013 ◽  
Vol 205-206 ◽  
pp. 400-405
Author(s):  
Peter Zaumseil ◽  
Yuji Yamamoto ◽  
Markus Andreas Schubert ◽  
Thomas Schroeder ◽  
Bernd Tillack

One way to further increase performance and/or functionality of Si micro-and nanoelectronics is the integration of alternative semiconductors on silicon (Si). We studied the Ge/Si heterosystem with the aim to realize a Ge deposition free of misfit dislocations and with low content of other structural defects. Ge nanostructures were selectively grown by chemical vapor deposition on periodic Si nanoislands (dots and lines) on SOI substrate either directly or with a thin (about 10 nm) SiGe buffer layer. The strain state of the structures was measured by different laboratory-based x-ray diffraction techniques. It was found that a suited SiGe buffer improves the compliance of the Si compared to direct Ge deposition; plastic relaxation during growth can be prevented, and fully elastic relaxation of the structure can be achieved. Transmission electron microscopy confirms that the epitaxial growth of Ge on nanostructured Si is free of misfit dislocations.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
O. A. Maslova ◽  
Yu. I. Yuzyuk ◽  
S. A. Barannikova

This work is aimed at studying asymmetric BaTiO31 − xΛ/BaZrO3xΛ ((BT) 1−xΛ/(BZ)xΛ) superlattices, grown by pulsed laser deposition onto (001) MgO substrates. The thicknesses of BT (ferroelectric) and BZ (paraelectric) layers were varied so that х ranged from 0 to 1 at a modulation period Λ of about 80 Å. The films were 400 nm thick. The out-of-plane lattice parameters of constituents were assessed using X-ray diffraction. The lattice dynamic peculiarities of superlattices were probed via Raman spectroscopy; special attention is paid to the analysis of E(1TO) and A1(2TO) ferroelectric soft modes. A comparative analysis of data acquired via both experimental techniques reveals the enhancement of stress between BT and BZ layers with a decrease in symmetry from the tetragonal to a monoclinic phase due to strains induced by the lattice parameter mismatch between the constituents.


Sign in / Sign up

Export Citation Format

Share Document