Thermoelectric and Mechanical Properties of Ca0.9Yb0.1MnO3 Based Materials

2007 ◽  
Vol 1044 ◽  
Author(s):  
Atsuko Kosuga ◽  
Saori Urata ◽  
Ryoji Funahashi

AbstractThe Ca0.9Yb0.1MnO3/Ag composites(the ratio of Ag to Ca0.9Yb0.1MnO3 was 0, 4.7, 9.4, and 18.8 wt %) were prepared by wet milling various amounts of Ca0.9Yb0.1MnO3 and Ag2O powder mixtures followed by sintering in order to improve the mechanical properties of Ca0.9Yb0.1MnO3 for n-type legs of thermoelectric oxide devices. The obtained composites consisted of two phases such as Ca0.9Yb0.1MnO3 and metallic silver from the X-ray diffraction (XRD) analysis. The scanning electron microscope (SEM) analysis indicated that the Ag particles, the size of which was within 5 μm, were homogeneously dispersed in Ca0.9Yb0.1MnO3 matrix for all the composites. The σf of 18.8 wt% Ag composite became 251 MPa, which was 2 times larger value than that of Ca0.9Yb0.1MnO3. The power factor (S2ρ) was slightly improved by the addition of silver particles. The maximum S2ρ, i.e. 0.26 mWm-1K-2 at 573 K was obtained for 18.8 wt% Ag composite.

2022 ◽  
Author(s):  
Sunita Kumari ◽  
Dhirendra Singhal ◽  
Rinku Walia ◽  
Ajay Rathee

Abstract The present project proposes to utilize rice husk and maize cob husk ash in the cement to mitigate the adverse impact of cement on environment and to enhance the disposal of waste in a sustainable manner. Ternary concrete / MR concrete was prepared by using rise husk and maize cob ash with cement. For the present project, five concrete mixes MR-0 (Control mix), MR-1 (Rice husk ash 10% and MR-2.5%), MR-2 (Rice husk ash 10% and MR-5%), MR-3 (Rice husk ash 10% and MR-2.5%), MR-4 (Rice husk ash 10% and MR-2.5%) were prepared. M35 concrete mix was designed as per IS 10262:2009 for low slump values 0-25mm. The purpose is to find the optimum replacement level of cement in M35 grade ternary concrete for I – Shaped paver blocks.In order to study the effects of these additions, micro-structural and structural properties test of concretes have been conducted. The crystalline properties of control mix and modified concrete are analyzed by Fourier Transform Infrared Spectroscope (FTIR), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). The results indicated that 10% Rice husk ash and 5% maize cob ash replaced with cement produce a desirable quality of ternary concrete mix having good compressive strength. The results of SEM analysis indicated that the morphology of both concrete were different, showing porous structure at 7 days age and become unsymmetrical with the addition of ashes. After 28 day age, the control mix contained more quantity of ettringite and became denser than ternary concrete. XRD analysis revealed the presence of portlandite in large quantity in controlled mix concrete while MR concrete had the partially hydrated particle of alite.


2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Amir Arifin ◽  
Abu Bakar Sulong ◽  
Norhamidi Muhamad ◽  
Junaidi Syarif

Hydroxyapatite (HA) has been widely used in biomedical applications due to its excellent biocompatibility. However, Hydroxyapatite possesses poor mechanical properties and only tolerate limited loads for implants. Titanium is well-known materials applied in implant that has advantage in mechanical properties but poor in biocompatibility. The combination of the Titanium alloy and HA is expected to produce bio-implants with good in term of mechanical properties and biocompatabilty. In this work, interaction and mechanical properties of HA/Ti6Al4V was analyzed. The physical and mechanical properties of HA/Ti6Al4V composite powder obtained from compaction (powder metallurgy) of 60 wt.% Ti6Al4V and 40 wt.% HA and sintering at different temperatures in air were investigated in this study. Interactions of the mixed powders were investigated using X-ray diffraction. The hardness and density of the HA/Ti6Al4V composites were also measured. Based on the results of XRD analysis, the oxidation of Ti began at 700 °C. At 1000 °C, two phases were formed (i.e., TiO2 and CaTiO3). The results showed that the hardness HA/Ti6Al4V composites increased by 221.6% with increasing sintering temperature from 700oC to 1000oC. In contrast, the density of the composites decreased by 1.9% with increasing sintering temperature. 


2018 ◽  
Vol 64 (4) ◽  
pp. 381
Author(s):  
Muhammad Tufiq Jamil ◽  
Javed Ahmad ◽  
Syed Hamad Bukhari ◽  
Murtaza Saleem

Rare earth nano sized pollycrystalline orthoferrites and orthocromites ReT mO3 (Re = La, Nd, Gd, Dy, Y and T m = Fe, Cr) have been synthesized by sol-gel auto combustion citrate method. The samples have been characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and UV-visible spectroscopy. The samples are single phase as confirmed by XRD analysis and correspond to the orthorhombic crystal symmetry with space group pbnm. Debye Scherer formula and Williamson Hall analysis have been used to calculate the average grain size which is consistent with that of determined from SEM analysis and varied between 25-75 nm. The elemental compositions of all samples have been checked by EDX analysis. Different crystallographic parameters are calculated with strong structural correlation among Re and Tm sites. The optical energy band gap has been calculated by using Tauc relation estimated to be in the range of 1.77 - 1.87 eV and 2.77 - 3.14 eV, for ReFeO3 and ReCrO3, respectively.


2015 ◽  
Vol 35 ◽  
pp. 21-26 ◽  
Author(s):  
Susmita Das ◽  
Vimal Chandra Srivastava

Metal oxide nanocomposite (ZnO-CuO) was successfully synthesized by one step homogeneous coprecipitation method and further characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron micrograph (SEM), X-ray diffraction analysis (XRD) and UV-visible diffuse reflectance spectra. XRD analysis exhibited presence of pure copper oxide and zinc oxide within the nanocomposite. SEM analysis indicated that the ZnO-CuO nanocomposite was consisted of flower shaped ZnO along with leaf shaped CuO. Photocatalytic activity of nanocomposite was evaluated in terms of degradation of methylene blue (MB) dye solution under ultra-violet radiation. Results showed that the photocatalytic efficiency of ZnO-CuO nanocomposite was higher than its individual pure oxides (ZnO or CuO).


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1948 ◽  
Author(s):  
Yan Ma ◽  
Anxia Yang ◽  
Huiping Zhu ◽  
Arslan Muhammad ◽  
Pengwei Yang ◽  
...  

In this paper, the effects of Bi2O3 doping on the mechanical properties of PbO ceramic pellets were studied. Different ratios of Bi2O3/PbO (i.e., xBi2O3-(1−x) PbO, where x is 0, 1, 3, 5, or 7 wt.%) were fabricated and sintered at 570, 620, and 670 °C. Mechanical properties including density, hardness, flexural strength, and sintering of PbO were studied for each of the aforementioned compositions. Phase composition, microstructure, and the worn surfaces of the composites were characterized by scanning electron microscopy and X-ray diffraction (XRD). The XRD analysis revealed that a solid solution formed in the composite ceramic. The best suited conditions of temperature and doping of Bi2O3 for optimal sintering were found to be 620 °C and 3 wt.%, respectively. The hardness of the 3 wt.% Bi2O3-97 wt.% PbO ceramic was found to be 717 MPa, which is about four times higher than the hardness of pure PbO. In addition, the strength of the composites was found to be 43 MPa, which is two times higher than that of pure PbO. The integrity of the composites was verified using the lead–bismuth eutectic alloy flushing experiment. The results of this research paper are important for future studies of oxygen control in the lead–bismuth eutectic alloy of lead-cooled fast reactors.


2011 ◽  
Vol 236-238 ◽  
pp. 83-86 ◽  
Author(s):  
Xian Hui Sun

The collagen was blended with polyvinyl alcohol (PVA) with the maximum maintenance of the natural structure as precondition. The apparent viscosity and rheology property of PVA-collagen blended solution were studied. the mechanical properties of the blend membrane formed from PVA-collagen blended solution were also determined. The PVA-collagen blended solution was wet spinned with the sodium sulfate as coagulant to prepare PVA-collagen composite fibers. SEM analysis and X-ray diffraction analysis of the PVA-collagen composite fibers were studied. The results indicated that, blended with PVA, the spinning property and mechanical properties of collagen were improved. The figure of the aim fiber transect structure was similar as the kidney, and it had a uniform size. The crystallization degree of the fiber was 55.7%, and it was increased with the increase of the hot extending temperature and the extending ratio.


2019 ◽  
Vol 969 ◽  
pp. 169-174
Author(s):  
R. Sivanand ◽  
S. Chellammal ◽  
S. Manivannan

In this paper, the effect of size variation of cadmium sulphide nanocrystallites which have been prepared by precipitation method is analyzed. These prepared samples were studied using X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Energy dispersive analysis of spectroscopy (EDAX) techniques. SEM analysis represents the morphological nature of prepared samples and EDAX indicates the confirmation of elements present in the sample. XRD analysis determines the size of the samples and identifies the structure using miller indices (h k l values) of the nanocrystallies matches with JCPDS. From the XRD analysis, the size variation which depends on dopant, capping agent are discussed and corresponding results are reported in this paper.


2015 ◽  
Vol 88 (1) ◽  
pp. 138-146 ◽  
Author(s):  
Rouhollah Bagheri ◽  
Reza Darvishi

ABSTRACT In this study, polyurethane (PU)/organomodified montmorillonite (cloisite®30B) is synthesized via in situ polymerization by reaction of an ether-based prepolymer with the isocyanate end groups and adiamine chain extender (4, 4-methylene-bis(2-chloroaniline)) in the presence of different amounts of nanoparticles dispersed in the prepolymer matrix by an ultrasonic mixer for 1 h. The synthesized polymers are cast on a pretreated carbon steel sheet and cured at 120 °C in an oven. The PU and its composites have been characterized by using Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and mechanical testing. The XRD analysis of the cured samples containing 1 to 3 wt% cloisite30B showed intercalation segments in the silicate layers and exfoliation for 0.5 wt% nanoparticles. The highest mechanical properties were obtained using the cured exfoliated silicate layer sample. A twofold increase in the ultimate tensile strength and a 2.3 times increase in the adhesion strength were found for 0.5 wt% organoclay/PU as compared with that of pure PU. In addition, the exfoliated structure sample exhibited a 16% reduction in abrasion compared with that of pure PU.


2006 ◽  
Vol 321-323 ◽  
pp. 1461-1464 ◽  
Author(s):  
Hyoung Kuk Park ◽  
Jea Hwa Hong ◽  
Chong Soo Lee

Galvannealed steels are produced by reheating of Zinc-coated steels, in which the iron and the zinc are interdiffused to form Zn-Fe intermatallic compound. In recent years, application of galvannealed steel has increased due to its excellent corrosion resistance, good weldability and paintability. Galvannealed production requires strict control of processing conditions to obtain an optimal alloying degree in the coatings. The analysis of the alloying degree is very important since they are closely related to the corrosion and mechanical properties. This study is measurement of alloying degree of the galvannealed steel by using the XRD. Partial least squares (PLS) model is a powerful multivariate tool that has been successfully applied to the quantitative analysis of data in XRD. The alloying degree was determined by using PLS regression to a concentration accuracy of 0.2%. The XRD analysis and proposed PLS model can be successfully used to determine the alloying degree of industrially produced galvannealed steel.


2012 ◽  
Vol 620 ◽  
pp. 12-16 ◽  
Author(s):  
Abdul Rashid Jamaludin ◽  
Shah Rizal Kasim ◽  
Zainal Arifin Ahmad

The effects of calcium carbonate (CaCO3) addition on the physical properties of ZnO-based crystal glaze batches were investigated. Samples were fired at different gloss firing temperatures ranging from 1180-1220°C with 3 hours soaking at 1060°C crystallization temperature. X-ray diffraction (XRD) analysis identifiedthe crystal phase occurred as willemite (Zn2SiO4) and the scanning electron microscope (SEM) analysis indicated that willemite crystals are in the acicular needle like shape that formed spherulite. The intensities of willemite peaks decreased with CaCO3 addition and completely vanished at 5.0 wt% CaCO3. Varied formation of spherulites developed of the surface of crystal glaze as the flows of the glaze stretched further as the amount of CaCO3 increased.


Sign in / Sign up

Export Citation Format

Share Document