Design and Fabrication of an Optical-MEMS Sensor

2007 ◽  
Vol 1052 ◽  
Author(s):  
Vaibhav Mathur ◽  
Jin Li ◽  
William D. Goodhue

AbstractA novel optical-MEMS sensor based on the AlGaAs material system is designed and fabricated. The device consists of micro-beam waveguides butt-coupled with their ends separated by approximately 2 to 4 µm. The device works on the principle that when acoustically driven by an external source, the waveguides misalign, leading to coupling loss. The device design parameters were determined using FEM (Finite Element Method) modeling. The dielectric waveguide beams were designed for single mode propagation at 785 nm and longer wavelengths. A combination of dry and wet etching process followed by precision laser cutting was used to fabricate the suspended beams. Beams ranging from 100 µm to 400 µm with fundamental frequencies of 50 KHz to 200 KHz were successfully fabricated. Initial uncut waveguide test results will be discussed along with the plan for characterizing the devices using an acoustically coupled piezoelectric driver. These devices may be utilized for vibration sensing, or optical intensity modulation.

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
P. G. Kuppusamy ◽  
Ahmed Nabih Zaki Rashed ◽  
P. Jayarajan ◽  
M. R. Thiyagupriyadharsan ◽  
...  

AbstractHigh-speed single-mode fiber-optic communication systems have been presented based on various hybrid multiplexing schemes. Refractive index step and silica-doped germanium percentage parameters are also preserved during their technological boundaries of attention. It is noticed that the connect design parameters suffer more nonlinearity with the number of connects. Two different propagation techniques have been used to investigate the transmitted data rates as a criterion to enhance system performance. The first technique is soliton propagation, where the control parameters lead to equilibrium between the pulse spreading due to dispersion and the pulse shrinking because of nonlinearity. The second technique is the MTDM technique where the parameters are adjusted to lead to minimum dispersion. Two cases are investigated: no dispersion cancellation and dispersion cancellation. The investigations are conducted over an enormous range of the set of control parameters. Thermal effects are considered through three basic quantities, namely the transmission data rates, the dispersion characteristics, and the spectral losses.


Author(s):  
Yiming Ma ◽  
Liusheng He ◽  
Ming Li

Steel slit shear walls (SSSWs), made by cutting slits in steel plates, are increasingly adopted in seismic design of buildings for energy dissipation. This paper estimates the seismic energy dissipation capacity of SSSWs considering out-of-plane buckling. In the experimental study, three SSSW specimens were designed with different width-thickness ratios and aspect ratios and tested under quasi-static cyclic loading. Test results showed that the width-thickness ratio of the links dominated the occurrence of out-of-plane buckling, which produced pinching in the hysteresis and thus reduced the energy dissipation capacity. Out-of-plane buckling occurred earlier for the links with a larger width-thickness ratio, and vice versa. Refined finite element model was built for the SSSW specimens, and validated by the test results. The concept of average pinching parameter was proposed to quantify the degree of pinching in the hysteresis. Through the parametric analysis, an equation was derived to estimate the average pinching parameter of the SSSWs with different design parameters. A new method for estimating the energy dissipation of the SSSWs considering out-of-plane buckling was proposed, by which the predicted energy dissipation agreed well with the test results.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Izaddeen Kabir Yakasai ◽  
Atta Rahman ◽  
Pg Emeroylariffion Abas ◽  
Feroza Begum

AbstractA porous core photonic crystal fiber (PCF) for transmitting terahertz waves is reported and characterized using finite element method. It is shown that by enveloping an octagonal core consisting of only circular air holes in a hexagonal cladding, it is possible to attain low effective material loss that is 73.8% lower than the bulk material absorption loss at 1.0 THz operating frequency. Moreover, a low confinement loss of 7.53×10–5 cm−1 and dispersion profile of 1.0823±0.06 ps/THz/cm within 0.7–1 THz are obtained using carefully selected geometrical design parameters. Other guiding properties such as single-mode operation, bending loss, and effective area are also investigated. The structural design of this porous core PCF is comparatively simple since it contains noncomplex lattices and circular shaped air holes; and therefore, may be implemented using existing fabrication techniques. Due to its auspicious guiding properties, the proposed fiber may be used in single mode terahertz imaging and other short distance terahertz applications.


Author(s):  
Jaegon Yoo ◽  
Koo-Tae Kang ◽  
Jin-Wook Huh ◽  
Chimahn Choi

Since gear noise in automotive is one of the most unpleasant noises for passengers, various solutions, such as gear design optimization, tooth modification and transfer path reformations in the vehicle have been developed. But, these attempts are mainly focused on the fundamental mesh excitation of the gear set without any consideration of their harmonic noise (1st, 2nd or higher). Harmonic gear whine noise is easily audible in the vehicle because of their high frequency characteristics in spite of low sound pressure level. This annoying pure-tone noise is usually issued in the transmission system composed of the gears produced by grinding process. This paper will present the main sources of this harmonic gear whine noise with the test results of gears with identical design parameters but having different surface structure (roughness parameters, wave patterns). Additionally, manufacturing guidelines of gear surface structure will be proposed at the end of this paper.


2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
D. L. Robinette ◽  
J. M. Schweitzer ◽  
D. G. Maddock ◽  
C. L. Anderson ◽  
J. R. Blough ◽  
...  

The objective of this investigation was to develop a dimensionless model for predicting the onset of cavitation in torque converters applicable to general converter designs. Dimensional analysis was applied to test results from a matrix of torque converters that ranged from populations comprised of strict geometric similitude to those with more relaxed similarities onto inclusion of all the torque converters tested. Stator torque thresholds at the onset of cavitation for the stall operating condition were experimentally determined with a dynamometer test cell using nearfield acoustical measurements. Cavitation torques, design parameters, and operating conditions were resolved into a set of dimensionless quantities for use in the development of dimensionless empirical models. A systematic relaxation of the fundamental principle of dimensional analysis, geometric similitude, was undertaken to present empirical models applicable to torque converter designs of increasingly diverse design parameters. A stepwise linear regression technique coupled with response surface methodology was utilized to produce an empirical model capable of predicting stator torque at the onset of cavitation with less than 7% error for general automotive torque converter designs.


1998 ◽  
Vol 7 (4) ◽  
pp. 096369359800700 ◽  
Author(s):  
VK Ganesh ◽  
S Ramakrishna ◽  
HJ Leck

A method of fabricating fiber-reinforced composite based functionally gradient material is described in this paper. The material has continuously varying mechanical properties along the length. The continuous variation of the mechanical properties is achieved by continuously varying the fiber orientation using the braiding process. The test results indicate an elastic modulus increase by about 42% from the largest braid angle to the smallest braid angle for the material system and the orientation angle considered in the present study.


2020 ◽  
Vol 29 ◽  
pp. 096369351989500
Author(s):  
Boling He

Considering the fact that the foundation data for a new X850 ± IM190 carbon/epoxy material system adopted in commercial aircraft industry are extremely scarce in the literature, an in-plane, static tensile experiment was carried out to investigate the bearing performance of double-lap, single-bolt joints in X850 ± IM190 carbon fiber-reinforced polymer (CFRP) composites. The effects of ply ratio, 0° layers’ combination percentage, bolt diameter, and curing method were considered. Then, special attention was paid to determine the design parameters of X850 ± IM190 CFRP bolted joints, such as tensile strength of un-notched laminate and stress concentration relief factor. Based on these design parameters, an efficient semianalytical approach was established to obtain the ultimate bearing strength of the joints. The failure prediction exhibited excellent agreement with the experimental data. These results will play an important role in design and strength evaluation of X850 ± IM190 CFRP bolted joints.


2019 ◽  
Vol 284 ◽  
pp. 02001
Author(s):  
Andrzej Ambroziak ◽  
Paweł Piotrkowski ◽  
Tomasz Heizig

The paper analyses a case study on the structural assessment of warehouse building partially damaged by fire caused by external source (fire of lorries close to the building). The authors focus on the site investigations and laboratory test results prior to assessing actual condition of the structural elements. Both strengthening concept and repair procedure of a steel column are addressed here. A short literature survey in the paper regards fire damages and its impact on the entire structural systems and its members.


Sign in / Sign up

Export Citation Format

Share Document