Multilayer Analysis by Focused MeV Ion Beam

1987 ◽  
Vol 108 ◽  
Author(s):  
M. Takai ◽  
A. Kinomura ◽  
M. Izumi ◽  
K. Matsunaga ◽  
K. Inoue ◽  
...  

ABSTRACTA high-energy (MeV) helium ion beam has been focused down to 1 μm by a combination of piezo-driven objective slits and a magnetic quadrupole doublet. Rutherford backscattering (RBS) mapping techniques using focused MeV ion beams were, for the first time, applied to multilayered structures of metals, isolated with insulators, representing a test structure for multilayered wiring or interconnections of integrated circuits to nondestructively analyze the imperfection of the structures.

1983 ◽  
Vol 23 ◽  
Author(s):  
G.J. Galvin ◽  
L.S. Hung ◽  
J.W. Mayer ◽  
M. Nastasi

ABSTRACTEnergetic ion beams used outside the traditional role of ion implantation are considered for semiconductor applications involving interface modification for self-aligned silicide contacts, composition modification for formation of buried oxide layers in Si on insulator structures and reduced disorder in high energy ion beam annealing for buried collectors in transistor fabrication. In metals, aside from their use in modification of the composition of near surface regions, energetic ion beams are being investigated for structural modification in crystalline to amorphous transitions. Pulsed beams of photons and electrons are used as directed energy sources in rapid solidification. Here, we consider the role of temperature gradients and impurities in epitaxial growth of silicon.


2006 ◽  
Vol 24 (4) ◽  
pp. 541-551 ◽  
Author(s):  
F. BECKER ◽  
A. HUG ◽  
P. FORCK ◽  
M. KULISH ◽  
P. NI ◽  
...  

An intense and focused heavy ion beam is a suitable tool to generate high energy density in matter. To compare results with simulations it is essential to know beam parameters as intensity, longitudinal, and transversal profile at the focal plane. Since the beam's energy deposition will melt and evaporate even tungsten, non-intercepting diagnostics are required. Therefore a capacitive pickup with high resolution in both time and space was designed, built and tested at the high temperature experimental area at GSI. Additionally a beam induced fluorescence monitor was investigated for the synchrotron's (SIS-18) energy-regime (60–750 AMeV) and successfully tested in a beam-transfer-line.


2017 ◽  
Vol 8 ◽  
pp. 682-687 ◽  
Author(s):  
Ivan Shorubalko ◽  
Kyoungjun Choi ◽  
Michael Stiefel ◽  
Hyung Gyu Park

Recent years have seen a great potential of the focused ion beam (FIB) technology for the nanometer-scale patterning of a freestanding two-dimensional (2D) layer. Experimentally determined sputtering yields of the perforation process can be quantitatively explained using the binary collision theory. The main peculiarity of the interaction between the ion beams and the suspended 2D material lies in the absence of collision cascades, featured by no interaction volume. Thus, the patterning resolution is directly set by the beam diameters. Here, we demonstrate pattern resolution beyond the beam size and precise profiling of the focused ion beams. We find out that FIB exposure time of individual pixels can influence the resultant pore diameter. In return, the pore dimension as a function of the exposure dose brings out the ion beam profiles. Using this method of determining an ion-beam point spread function, we verify a Gaussian profile of focused gallium ion beams. Graphene sputtering yield is extracted from the normalization of the measured Gaussian profiles, given a total beam current. Interestingly, profiling of unbeknown helium ion beams in this way results in asymmetry of the profile. Even triangular beam shapes are observed at certain helium FIB conditions, possibly attributable to the trimer nature of the beam source. Our method of profiling ion beams with 2D-layer perforation provides more information on ion beam profiles than the conventional sharp-edge scan method does.


1995 ◽  
Vol 396 ◽  
Author(s):  
A. Wagner ◽  
P. Blauner ◽  
P. Longo ◽  
S. Cohen

AbstractFocused Ion Beams offer a new method of measuring the size of polymer resist features on integrated circuits. The short penetration range of an ion relative to an electron is shown to offer fundamental advantages for critical dimension (CD) metrology. By confining the polymer damage to the very near surface, ion beams can induce less dimensional change than scanning electron microscopes during the measurement process. This can result in improved CD measurement precision. The erosion rate of polymers to various ion species is also presented, and we show that erosion is non-linear with ion dose. The use of FIB for forming resist cross sections is also demonstrated. An H20 gas assisted etching process for polymers has been developed, and is shown to significantly improve the quality of resist cross sections.


2008 ◽  
Vol 79 (3) ◽  
pp. 036102 ◽  
Author(s):  
Gary A. Glass ◽  
Alexander D. Dymnikov ◽  
Bibhudutta Rout ◽  
Johnny F. Dias ◽  
Louis M. Houston ◽  
...  

MRS Bulletin ◽  
1987 ◽  
Vol 12 (6) ◽  
pp. 30-34 ◽  
Author(s):  
H-J. Gossmann ◽  
L.C. Feldman

AbstractThis article discusses uses of high energy ion beam scattering for materials analysis, including channeling, particle induced x-ray emission (PIXE), and nuclear reaction analysis (NRA). These additional capabilities used in conjunction with RBS equipment provide capabilities for crystalline defect studies and light element detection.


2015 ◽  
Vol 25 (03n04) ◽  
pp. 227-233 ◽  
Author(s):  
Keisuke Yasuda

A microbeam system at the Wakasa Wan Energy Research Center is presented. A magnetic quadrupole doublet is used for the focusing of ion beams from a 5 MV tandem accelerator. Micro-PIXE and micro-PIGE measurements both in the vacuum and air are applicable with this system. Examples of the measurements for tooth and tea leaves are also presented.


1988 ◽  
Vol 100 ◽  
Author(s):  
E. J. Williams ◽  
E. G. Bithell ◽  
C. B. Boothroyd ◽  
W. M. Stobbs ◽  
R. J. Young ◽  
...  

ABSTRACTThe promotion of silicide reactions at the interface between silicon and a metal overlayer is described, the reactions being initiated by scanned ion beams. The relative effects of low and high energy Si+ and Si2+ beams are discussed and the results of subsequent annealing are compared with those seen when using low energy (5keV) argon ion beams. The implications for the writing of metallisation lines are also noted.


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 551
Author(s):  
Yunchao Zheng ◽  
Shan Li ◽  
Jianzhong Huang ◽  
Haowei Fu ◽  
Libin Zhou ◽  
...  

High-energy ion beams are known to be an effective and unique type of physical mutagen in plants. However, no study on the mutagenic effect of argon (Ar) ion beam radiation on rice has been reported. Genome-wide studies on induced mutations are important to comprehend their characteristics for establishing knowledge-based protocols for mutation induction and breeding, which are still very limited in rice. The present study aimed to investigate the mutagenic effect of three ion beams, i.e., Ar, carbon (C) and neon (Ne) on rice and identify and characterize heritable induced mutations by the whole genome sequencing of six M4 plants. Dose-dependent damage effects were observed on M1 plants, which were developed from ion beam irradiated dry seeds of two indica (LH15, T23) and two japonica (DS551, DS48) rice lines. High frequencies of chlorophyll-deficient seedlings and male-sterile plants were observed in all M2 populations (up to ~30% on M1 plant basis); plants from the seeds of different panicles of a common M1 plant appeared to have different mutations; the whole genome-sequencing demonstrated that there were 236–453 mutations in each of the six M4 plants, including single base substitutions (SBSs) and small insertion/deletions (InDels), with the number of SBSs ~ 4–8 times greater than that of InDels; SBS and InDel mutations were distributed across different genomic regions of all 12 chromosomes, however, only a small number of mutations (0–6) were present in exonic regions that might have an impact on gene function. In summary, the present study demonstrates that Ar, C and Ne ion beam radiation are all effective for mutation induction in rice and has revealed at the genome level the characteristics of the mutations induced by the three ion beams. The findings are of importance to the efficient use of ion beam radiation for the generation and utilization of mutants in rice.


Carbon ◽  
2014 ◽  
Vol 72 ◽  
pp. 233-241 ◽  
Author(s):  
Shuojin Hang ◽  
Zakaria Moktadir ◽  
Hiroshi Mizuta

Sign in / Sign up

Export Citation Format

Share Document