Fast Curing Epoxy and Episulfide Resins for Biomedical Applications

1987 ◽  
Vol 110 ◽  
Author(s):  
Ioannis N. Hadjinikolaou ◽  
James P. Bell ◽  
Larz Spangberg

Epoxy resins have physical properties that make them suitable for dental and orthopaedic applications such as adhesives and cements. However, it has been observed that epoxy resins harden too slowly for clinical use when mixed with conventional curing agents, e.g. amines and polyamides. A new epoxy - diepisulfide - polyamide system has been developed which gels in 5 to 20 minutes at room temperature. The system consists of two parts: a polyamide curing agent, and a blend of the diepisulfide analog of diglycidyl ether of bisphenol A [DGEBA] dissolved in a mixture of epoxies of the DGEBA type.

CORROSION ◽  
1961 ◽  
Vol 17 (1) ◽  
pp. 11t-20t ◽  
Author(s):  
RONALD L. DeHOFF

Abstract The epoxy resins most widely used in corrosion prevention are liquids of low molecular weight which can be converted to hard, tough, chemically resistant polymers by the use of various curing agents. Unlike other thermosetting resins such as polyesters, the curing agents may produce chemical linkages in the final polymers that differ from those present in the uncured form. Hence, the properties of cured epoxy resins are likely dependent upon, and may even reflect the properties of the curing agent used. Some seven different epoxy resin systems were exposed to various chemical environments and evaluatd for changes in dimensional stability and flexural strengths over a six month period. From the data presented herein, only limited conclusions may be drawn. Heat cured systems fare better than room temperature cured systems in every case. Anhydride cured epoxy resins show greater resistance to outdoor weathering than amine cured systems. 5.4.5, 6.6.8


2011 ◽  
Vol 284-286 ◽  
pp. 365-368 ◽  
Author(s):  
Jing Zhu ◽  
Yong Wu ◽  
Lei Zhao ◽  
Hong Liang Wei ◽  
Hui Juan Chu ◽  
...  

Hexakis-(4-aminophenoxy)-cyclotriphosphazene (PN-NH2) was synthesized through nucleophilic substitution of the chloride atoms of hexachlorocyclotriphosphazene (HCCP) and reduction of the nitro group, and its chemical structure was characterized. As a curing agents for commercial epoxy resin Diglycidyl ether of bisphenol-A (DGEBA) PN-NH2 was compared with conventional curing agents 4,4-diaminodiphenylsulfone(DDS) and 4,4-diaminodiphenylmethane (DDM). The thermal properties and thermal degradation behaviors of these thermosetted resins were investigated by using thermogravimetric analysis (TGA). TGA studies demonstrated that the thermal properties of the PN-NH2-containing cured epoxy resin were higher than those of others. The phosphorus-nitrogen containing curing agent can result in a great improvement of the flame retardance for their thermosetted epoxy resins.


2002 ◽  
Vol 18 (3) ◽  
pp. 127-159 ◽  
Author(s):  
Tsuneo Koike

Dielectric measuring methods have been widely used for monitoring the curing system of the diglycidyl ether of bisphenol-A (DGEBA), a typical commercially available epoxide oligomer. The uncured DGEBA oligomer is regarded as a simple structural model for the reactive DGEBA-curing agent system before gelation. Dielectric monitoring methods, which are based on viscoelastic data of uncured DGEBA, are reviewed in terms of the real-time monitoring of the DGEBA curing system.


2020 ◽  
pp. 009524432092857
Author(s):  
Fozia Noreen ◽  
Ahtaram Bibi ◽  
Naila Khalid ◽  
Imran Ullah Khan

Novel azomethine ether-based compounds (A: N-((4-(9-(4-(phenylimino)methyl)phenoxy)nonyloxy)benzylidene)bezenamine and B: N-((4-(9-(4-(p-hydroxyphenylimino)methyl)phenoxy)nonyloxy)benzylidene)-4-hydroxybenzenamine) were synthesized by condensation reaction of dialdehyde, 4,4-(1,9-nonandiyle)bis(oxy)dibenzaldehyde with aromatic amines. Structures of synthesized compounds were successfully characterized by Fourier transform infrared (FTIR), ultraviolet–visible, proton nuclear magnetic resonance imaging and photoluminescence (PL) spectroscopy. The PL spectral analysis revealed that emission maxima of compounds A and B are at 475 and 500 nm, respectively, indicate blue and green light emission with large Stokes shift range (Δ λ ST, 109–138 nm). Two series of polymers: one azomethine-based polymers (C1–C5) and other without azomethine (H1–H4) were prepared by curing diglycidyl ether of bisphenol A with a synthesized curing agent (B) and commercial curing agent, respectively, in various proportions. The structural characterization of the resulting polymers was carried out by FTIR spectral analysis. Thermal properties revealed that azomethine-based polymers (C1–C5) were thermally stable up to 400°C as compared to H1–H4. The glass transition temperature of the polymers, determined by differential scanning calorimetry, was in the range 121–123°C.


RSC Advances ◽  
2020 ◽  
Vol 10 (68) ◽  
pp. 41954-41966 ◽  
Author(s):  
Samuel Malburet ◽  
Chiara Di Mauro ◽  
Camilla Noè ◽  
Alice Mija ◽  
Marco Sangermano ◽  
...  

Beyond the need to find a non-toxic alternative to DiGlycidyl Ether of Bisphenol-A (DGEBA), the serious subject of non-epichlorohydrin epoxy resins production remains a crucial challenge that must be solved for the next epoxy resin generations.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1914 ◽  
Author(s):  
Kireev ◽  
Bilichenko ◽  
Borisov ◽  
Mu ◽  
Kuznetsov ◽  
...  

Phosphazene-containing epoxy oligomers (PEO) were synthesized by the interaction of hexachlorocyclotriphosphazene (HCP), phenol, and bisphenol A in a medium of excess of epichlorohydrin using potassium carbonate and hydroxide as HCl acceptors with the aim of obtaining a product with lower viscosity and higher phosphazene content. PEOs are mixtures of epoxycyclophosphazene (ECP) and a conventional organic epoxy resin based on bisphenol A in an amount controlled by the ratio of the initial mono- and diphenol. According to 31P NMR spectroscopy, pentasubstituted aryloxycyclotrophosphazene compounds predominate in the ECP composition. The relative content in the ECP radicals of mono- and diphenol was determined by the MALDI-TOF mass spectrometry method. The organic epoxy fraction, according to gas chromatograpy-mass spectrometry (GC-MS), contains 50–70 wt % diglycidyl ether of bisphenol A. PEO resins obtained in the present work have reduced viscosity when compared to other known phosphazene-containging epoxy resins while phosphazene content is still about 50 wt %. Resins with an epoxy number within 12–17 wt %, are cured by conventional curing agents to form compositions with flame-retardant properties, while other characteristics of these compositions are at the level of conventional epoxy materials.


2011 ◽  
Vol 466 ◽  
pp. 65-72 ◽  
Author(s):  
Ozgur Ekincioglu ◽  
M. Hulusi Ozkul ◽  
Yoshihiko Ohama ◽  
Silvia Patachia ◽  
Georgeta Moise

Macro-defect-free (MDF) cements are cement-polymer composites and were developed by Birchall et al. three decades ago. The composites are produced by mixing small amounts of polymer and water with cement. However, they have a different production method than that of cement pastes, which was inspired by rubber production. Mixtures of cement, polymer and water are processed by using a two-roll mill. The composites are known with their high flexural strengths. Unfortunately, there are not any known commercial products using MDF cements because of their poor durability under moisture. In this study, MDF cements were prepared by using poly(vinyl alcohol--vinyl acetate) PVA, calcium aluminate cements and two different types of epoxy resins. Epoxy resins were a diglycidyl ether of bisphenol A and a mixture of a diglycidyl ethers of bisphenol A and F. Durability performance was compared with respect to biaxial flexural strengths, contact angle and atomic force microscopy (AFM) for the specimens stored in water.


Sign in / Sign up

Export Citation Format

Share Document