High Temperature Thermoelectric Properties of Nano-Bulk Silicon and Silicon Germanium

2009 ◽  
Vol 1166 ◽  
Author(s):  
Sabah Bux ◽  
Jean-Pierre Fleurial ◽  
Richard G. Blair ◽  
Pawan K. Gogna ◽  
Thierry Caillat ◽  
...  

AbstractPoint defect scattering via the formation of solid solutions to reduce the lattice thermal conductivity has been an effective method for increasing ZT in state-of-the-art thermoelectric materials such as Si-Ge, Bi2Te3-Sb2Te3 and PbTe-SnTe. However, increases in ZT are limited by a concurrent decrease in charge carrier mobility values. The search for effective methods for decoupling electronic and thermal transport led to the study of low dimensional thin film and wire structures, in particular because scattering rates for phonons and electrons can be better independently controlled. While promising results have been achieved on several material systems, integration of low dimensional structures into practical power generation devices that need to operate across large temperature differential is extremely challenging. We present achieving similar effects on the bulk scale via high pressure sintering of doped and undoped Si and Si-Ge nanoparticles. The nanoparticles are prepared via techniques that include high energy ball milling of the pure elements. The nanostructure of the materials is confirmed by powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements on the densified pellets show a drastic 90% reduction in the lattice contribution at room temperature when compared to doped single crystal Si. Additionally, Hall effect measurements show a much more limited degradation in the carrier mobility. The combination of low thermal conductivity and high power factor in heavily doped n-type nanostructured bulk Si leads to an unprecedented increase in ZT at 1275 K by a factor of 3.5 over that of single crystalline samples. Experimental results on both n-type and p-type Si are discussed in terms of the impact of the size distribution of the nanoparticles, doping impurities and nanoparticle synthesis processes.

2019 ◽  
Vol 1156 ◽  
pp. 79-96
Author(s):  
Rodrigo Spinelli ◽  
Pedro Henrique Dall'Agnol Pasquali ◽  
Angélica Bertotti ◽  
Dantara Lerin ◽  
Alana F. Pitol ◽  
...  

The high energy consumption of buildings in the various sectors of society, the exploitation of natural resources and the use of fossil fuels make it necessary to research constructive alternatives that can reduce the impact on the planet. The use of thermal insulation in buildings is important for the reduction of energy consumption, however, most of the materials developed are manufactured generating high rates of pollution. This study starts with the use of natural elements (corn cob / soybean straw / pine bark) and innovative elements (vacuum / slimstone plate), in order to improve energy efficiency of buildings. The methodological development of the work began in the selection of materials and development of facade cladding boards. The determination of the thermal conductivity was analyzed using a heating plate and PT100 temperature sensors, determination of the apparent and actual density, and analysis of the material composition using Scanning Electron Microscopy (SEM). After the development of the analyzes, the natural slabs and recycled slimstone showed significant results, with thermal conductivity lower than 0.07 W / m.k.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4339
Author(s):  
Yunqi Xing ◽  
Yuanyuan Chen ◽  
Jiakai Chi ◽  
Jingquan Zheng ◽  
Wenbo Zhu ◽  
...  

The current lead insulation of high-temperature superconductivity equipment is under the combined action of large temperature gradient field and strong electric field. Compared with a uniform temperature field, its electric field distortion is more serious, and it is easy to induce surface discharge to generate high-energy particles, destroy the insulation surface structure and accelerate insulation degradation. In this paper, the degradation reaction process of bisphenol F epoxy resin under the impact of high-energy particles, such as O3−, HO–, H3O+ and NO+, is calculated based on ReaxFF simulation. According to the different types of high-energy particles under different voltage polarities, the micro-degradation mechanism, pyrolysis degree and pyrolysis products of epoxy resin are analyzed. The results show that in addition to the chemical reaction of high-energy particles with epoxy resin, their kinetic energy will also destroy the molecular structure of the material, causing the cross-linked epoxy resin to pyrolyze, and the impact of positive particles has a more obvious impact on the pyrolysis of epoxy resin.


Author(s):  
David Romero ◽  
Aydin Nabovati ◽  
Gamal Refai-Ahmed ◽  
Daniel P. Sellan ◽  
Saeed Ghalambor ◽  
...  

In current and next-generation semiconductor electronic devices, sub-continuum heat transfer effects and non-uniform power distribution across the die surface lead to large temperature gradients and localized hot spots on the die. These hot spots can adversely affect device performance and reliability. In this work, we propose an enhanced method for thermal map prediction that considers sub-continuum thermal transport effects and show their impact in floor plan optimization. Sub-continuum effects are expressed in terms of an effective thermal conductivity. We introduce and calibrate a 2D thermal model of the die for fast simulation of thermal effects under non-uniform power generation scenarios. The calibrated 2D model is then used to study the impact of the effective thermal conductivity on the thermal map prediction and floor plan optimization. Results show that sub-continuum effects radically change both the predicted thermal performance and the optimal floor plan configurations.


Author(s):  
Joseph J. Comer ◽  
Charles Bergeron ◽  
Lester F. Lowe

Using a Van De Graaff Accelerator thinned specimens were subjected to bombardment by 3 MeV N+ ions to fluences ranging from 4x1013 to 2x1016 ions/cm2. They were then examined by transmission electron microscopy and reflection electron diffraction using a 100 KV electron beam.At the lowest fluence of 4x1013 ions/cm2 diffraction patterns of the specimens contained Kikuchi lines which appeared somewhat broader and more diffuse than those obtained on unirradiated material. No damage could be detected by transmission electron microscopy in unannealed specimens. However, Dauphiné twinning was particularly pronounced after heating to 665°C for one hour and cooling to room temperature. The twins, seen in Fig. 1, were often less than .25 μm in size, smaller than those formed in unirradiated material and present in greater number. The results are in agreement with earlier observations on the effect of electron beam damage on Dauphiné twinning.


Author(s):  
Z. Horita ◽  
D. J. Smith ◽  
M. Furukawa ◽  
M. Nemoto ◽  
R. Z. Valiev ◽  
...  

It is possible to produce metallic materials with submicrometer-grained (SMG) structures by imposing an intense plastic strain under quasi-hydrostatic pressure. Studies using conventional transmission electron microscopy (CTEM) showed that many grain boundaries in the SMG structures appeared diffuse in nature with poorly defined transition zones between individual grains. The implication of the CTEM observations is that the grain boundaries of the SMG structures are in a high energy state, having non-equilibrium character. It is anticipated that high-resolution electron microscopy (HREM) will serve to reveal a precise nature of the grain boundary structure in SMG materials. A recent study on nanocrystalline Ni and Ni3Al showed lattice distortion and dilatations in the vicinity of the grain boundaries. In this study, HREM observations are undertaken to examine the atomic structure of grain boundaries in an SMG Al-based Al-Mg alloy.An Al-3%Mg solid solution alloy was subjected to torsion straining to produce an equiaxed grain structure with an average grain size of ~0.09 μm.


Author(s):  
M. Gajdardziska-Josifovska

Parabolas have been observed in the reflection high-energy electron diffraction (RHEED) patterns from surfaces of single crystals since the early thirties. In the last decade there has been a revival of attempts to elucidate the origin of these surface parabolas. The renewed interest stems from the need to understand the connection between the parabolas and the surface resonance (channeling) condition, the latter being routinely used to obtain higher intensity in reflection electron microscopy (REM) images of surfaces. Several rather diverging descriptions have been proposed to explain the parabolas in the reflection and transmission Kikuchi patterns. Recently we have developed an unifying general treatment in which the parabolas are shown to be K-lines of two-dimensional lattices. Here we want to review the main features of this description and present an experimental diffraction pattern from a 30° MgO (111) surface which displays parabolas that can be attributed to the surface reconstruction.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Author(s):  
Z.L. Wang ◽  
J. Bentley ◽  
R.E. Clausing ◽  
L. Heatherly ◽  
L.L. Horton

It has been found that the abrasion of diamond-on-diamond depends on the crystal orientation. For a {100} face, the friction coefficient for sliding along <011> is much higher than that along <001>. For a {111} face, the abrasion along <11> is different from that in the reverse direction <>. To interpret these effects, a microcleavage mechanism was proposed in which the {100} and {111} surfaces were assumed to be composed of square-based pyramids and trigonal protrusions, respectively. Reflection electron microscopy (REM) has been applied to image the microstructures of these diamond surfaces.{111} surfaces of synthetic diamond:The synthetic diamonds used in this study were obtained from the De Beers Company. They are in the as-grown condition with grain sizes of 0.5-1 mm without chemical treatment or mechanical polishing. By selecting a strong reflected beam in the reflection high-energy electron diffraction (RHEED) pattern, the dark-field REM image of the surface is formed (Fig. 1).


Author(s):  
H. Banzhof ◽  
I. Daberkow

A Philips EM 420 electron microscope equipped with a field emission gun and an external STEM unit was used to compare images of single crystal surfaces taken by conventional reflection electron microscopy (REM) and scanning reflection electron microscopy (SREM). In addition an angle-resolving detector system developed by Daberkow and Herrmann was used to record SREM images with the detector shape adjusted to different details of the convergent beam reflection high energy electron diffraction (CBRHEED) pattern.Platinum single crystal spheres with smooth facets, prepared by melting a thin Pt wire in an oxyhydrogen flame, served as objects. Fig. 1 gives a conventional REM image of a (111)Pt single crystal surface, while Fig. 2 shows a SREM record of the same area. Both images were taken with the (555) reflection near the azimuth. A comparison shows that the contrast effects of atomic steps are similar for both techniques, although the depth of focus of the SREM image is reduced as a result of the large illuminating aperture. But differences are observed at the lengthened images of small depressions and protrusions formed by atomic steps, which give a symmetrical contrast profile in the REM image, while an asymmetric black-white contrast is observed in the SREM micrograph. Furthermore the irregular structures which may be seen in the middle of Fig. 2 are not visible in the REM image, although it was taken after the SREM record.


Author(s):  
L. Hultman ◽  
C.-H. Choi ◽  
R. Kaspi ◽  
R. Ai ◽  
S.A. Barnett

III-V semiconductor films nucleate by the Stranski-Krastanov (SK) mechanism on Si substrates. Many of the extended defects present in the films are believed to result from the island formation and coalescence stage of SK growth. We have recently shown that low (-30 eV) energy, high flux (4 ions per deposited atom), Ar ion irradiation during nucleation of III-V semiconductors on Si substrates prolongs the 1ayer-by-layer stage of SK nucleation, leading to a decrease in extended defect densities. Furthermore, the epitaxial temperature was reduced by >100°C due to ion irradiation. The effect of ion bombardment on the nucleation mechanism was explained as being due to ion-induced dissociation of three-dimensional islands and ion-enhanced surface diffusion.For the case of InAs grown at 380°C on Si(100) (11% lattice mismatch), where island formation is expected after ≤ 1 monolayer (ML) during molecular beam epitaxy (MBE), in-situ reflection high-energy electron diffraction (RHEED) showed that 28 eV Ar ion irradiation prolonged the layer-by-layer stage of SK nucleation up to 10 ML. Otherion energies maintained layer-by-layer growth to lesser thicknesses. The ion-induced change in nucleation mechanism resulted in smoother surfaces and improved the crystalline perfection of thicker films as shown by transmission electron microscopy and X-ray rocking curve studies.


Sign in / Sign up

Export Citation Format

Share Document