Novel Anti-Cancer, Anti-Bacterial Coatings for Biomaterial Applications: Selenium Nanoclusters

2009 ◽  
Vol 1209 ◽  
Author(s):  
Phong Anh Tran ◽  
Erik Taylor ◽  
Love Sarin ◽  
Robert H. Hurt ◽  
Thomas J Webster

AbstractTwo common problems with implantation after cancerous tumor resection are cancer recurrence and bacteria infection at the implant site. Tumor resection surgery sometimes can not remove all the cancerous cells, thus, cancer can return after implantation. In addition, bacteria infection is one of the leading causes of implant failure. Therefore, it is desirable to have anti-cancer and anti-bacterial molecules which both rapidly (for anti-infection purposes) and continuously (for anti-cancer purposes) are available at the implant site following implantation. Therefore, the objective of the present in vitro study was to create a multi-functional coating for anti-cancer and anti-bacterial orthopedic implant applications. Elemental selenium was chosen as the biologically active agent in this effort because of its known chemopreventive and anti-bacterial properties. To achieve that objective, titanium (Ti), a conventional orthopedic implant material was coated with selenium (Se) nanoclusters. Different coating densities were achieved by varying Se concentration in the reaction mixture. Titanium substrates coated with Se nanoclusters were shown to enhance healthy osteoblast (bone-forming cell) and inhibit cancerous osteoblast proliferation in co-culture experiments. Functions of S. epidermidis (one of the leading bacteria that infect implants) were inhibited on Ti coated with Se-nanoclusters compared to uncoated materials. Thus, this study provided for the first time a coating material (selenium nanoclusters) to the biomaterials’ community to promote healthy bone cells’ functions, inhibit cancer growth and prevent bacteria infection.

Pharmacia ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. 755-762
Author(s):  
Dora Trifonova ◽  
Anna Gavrilova ◽  
Galina Dyakova ◽  
Genadi Gavrilov ◽  
Maya Yotova ◽  
...  

The focus of the presented study is the in vitro anti-oxidant activity and anti-diabetic potential of water extracts from the following four herbal substances, not traditionally used for treatment of diabetes mellitus – leaves of Sambucus ebulus L. and Prunus mahaleb L., and flowering stems of Cichorium intybus L. and Satureja kitaibelii Wierzb. ex Heuff. The water extracts are obtained through ultrasonication. The extract of S. kitaibelii stands out due to its highest values in all studied indicators – total phenolic content, scavenging potential (DPPH, ABTS) and α-glucosidase inhibitory activity which was six times higher than acarbose. The extract of C. intybus also showed significant α-glucosidase inhibitory activity compared to acarbose. The flowering stems of both species are promising sources of biologically active substances for blood sugar control in diabetes mellitus.


2004 ◽  
Vol 845 ◽  
Author(s):  
Ai Lin Chun ◽  
Hicham Fenniri ◽  
Thomas J. Webster

ABSTRACTOrganic nanotubes called helical rosette nanotubes (HRN) have been synthesized in this study for bone tissue engineering applications. They possess intriguing properties for various bionanotechnology applications since they can be designed to mimic the nanostructured constituent components in bone such as collagen fibers and hydroxyapatite (Ca5(PO4)3(OH)) which bone cells are naturally accustomed to interacting with. This is in contrast to currently used orthopaedic materials such as titanium which do not possess desirable nanometer surface roughness. The objective of this in vitro study was to determine bone-forming cell (osteoblasts) interactions on titanium coated with HRNs. Results of this study showed for the first time increased osteoblast adhesion on titanium coated with HRNs compared to those not coated with HRNs. In this manner, this study provided evidence that HRNs should be further considered for orthopaedic applications.


Endocrinology ◽  
2013 ◽  
Vol 154 (6) ◽  
pp. 2069-2080 ◽  
Author(s):  
Lalita Wattanachanya ◽  
Wei-Dar Lu ◽  
Ramendra K. Kundu ◽  
Liping Wang ◽  
Marcia J. Abbott ◽  
...  

Abstract Adipose tissue plays an important role in skeletal homeostasis, and there is interest in identifying adipokines that influence bone mass. One such adipokine may be apelin, a ligand for the Gi-G protein-coupled receptor APJ, which has been reported to enhance mitogenesis and suppress apoptosis in MC3T3-E1 cells and primary human osteoblasts (OBs). However, it is unclear whether apelin plays a physiological role in regulating skeletal homeostasis in vivo. In this study, we compared the skeletal phenotypes of apelin knockout (APKO) and wild-type mice and investigated the direct effects of apelin on bone cells in vitro. The increased fractional cancellous bone volume at the distal femur was observed in APKO mice of both genders at 12 weeks of age and persisted until the age of 20. Cortical bone perimeter at the femoral midshaft was significantly increased in males and females at both time points. Dynamic histomorphometry revealed that APKO mice had increased rates of bone formation and mineral apposition, with evidences of accelerated OB proliferation and differentiation, without significant alteration in osteoclast activity. An in vitro study showed that apelin increased proliferation of primary mouse OBs as well as suppressed apoptosis in a dose-dependent manner with the maximum effect at 5nM. However, it had no effect on the formation of mineralized nodules. We did not observed significantly altered in osteoclast parameters in vitro. Taken together, the increased bone mass in mice lacking apelin suggested complex direct and paracrine/endocrine effects of apelin on bone, possibly via modulating insulin sensitivity. These results indicate that apelin functions as a physiologically significant antianabolic factor in bone in vivo.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 945
Author(s):  
Marika Lanza ◽  
Giovanna Casili ◽  
Giovanna Loredana La Torre ◽  
Daniele Giuffrida ◽  
Archimede Rotondo ◽  
...  

Marine species represent a great source of biologically active substances; Actinia equina (AE), an Anthozoa Cnidaria belonging to the Actinidiae family, have been proposed as original food and have already been included in several cooking recipes in local Mediterranean shores, and endowed with excellent nutraceutical potential. The aim of this study was to investigate some unexplored features of AE, through analytical screening and an in-vitro and in-vivo model. An in-vitro study, made on RAW 264.7 stimulated with H2O2, showed that the pre-treatment with AE exerted an antioxidant action, reducing lipid peroxidation and up-regulating antioxidant enzymes. On the other hand, the in-vivo study over murine model demonstrated that the administration of AE extracts is able to reduce the carrageenan (CAR)-induced paw edema. Furthermore, the histological damage due to the neutrophil infiltration is prevented, and this highlights precious anti-inflammatory features of the interesting food-stuff. Moreover, it was assessed that AE extract modulated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) and The nuclear factor erythroid 2–related factor 2 (Nrf-2) pathways. In conclusion, our data demonstrated that thanks to the antioxidant and anti-inflammatory properties, AE extract could be used as a new food supplement for inflammatory pathology prevention.


1989 ◽  
Vol 12 (8) ◽  
pp. 505-508 ◽  
Author(s):  
G. Passavanti ◽  
E. Buongiorno ◽  
G. De Fino ◽  
D. Fumarola ◽  
P. Coratelli

This study of 20 endotoxemic patients submitted to 70 hemodialyses (HD) found a reduction of the pre-HD limulus amebocyte lysate (LAL) positivity in 50 HD (71%), without appreciable differences in terms of effectiveness between cuprophan and AN 69 membranes. To define the mechanisms responsible for the reduction in LAL positivity during HD, the membranes were used in two in vitro studies, the first of which showed that the LAL positivity of blood containing lipopolysaccharide (LPS), submitted to hemofiltration (HF) for 300 min, remained unchanged and the ultrafiltrate remained constantly LAL negative. These results suggest that the reduction in LAL positivity observed in HD in vivo, an expression of reduced endotoxemia, cannot be attributed either to the filtration of the LPS as such or to its fragmentation following blood-membrane interaction into theoretically less filtrable molecules or to mechanisms of LPS adsorption on the membrane. The in vivo reduction of LAL positivity is more likely due to removal of the filtrable endotoxin fragments already released in the body, like lipid A, the biologically active component of LPS, known to react to LAL. This hypothesis was borne out by the second in vitro study, where the LAL positivity of blood containing lipid A, treated by HF for 80 min, gradually decreased, and dialytic permeability to lipid A was confirmed by the appearance of LAL positivity in the ultrafiltrate.


2003 ◽  
Vol 806 ◽  
Author(s):  
Thomas J. Webster ◽  
Jeremiah U. Ejiofor

ABSTRACTIncreased functions of osteoblasts (bone-forming cells) have been demonstrated on nanophase compared to conventional ceramics (specifically, alumina, titania, and hydroxyapatite), polymers (such as poly-lactic-glycolic acid and polyurethane), carbon nanofibers, and composites thereof. Nanophase materials are materials that simulate dimensions of constituent components of bone since they possess particle or grain sizes less than 100 nm. However, to date, interactions of osteoblasts on nanophase compared to conventional metals remain to be elucidated. For this reason, the objective of the present in vitro study was to design, fabricate, and evaluate osteoblast adhesion on nanophase metals (specifically, Ti and Ti6Al4V). Results of this study provided the first evidence of increased osteoblast adhesion on nanophase compared to conventional Ti-based metals. Moreover, directed osteoblast adhesion was observed preferentially at metal particle boundaries. It is speculated that since more particle boundaries were created through the use of nanophase compared to conventional metals, increased osteoblast adhesion resulted. Because adhesion is a necessary prerequisite for subsequent functions of osteoblasts (such as deposition of calcium-containing mineral), the present study suggests that Ti-based nanophase metals should be further considered for orthopedic implant applications.


2017 ◽  
Vol 139 ◽  
pp. 111
Author(s):  
Marie Goua ◽  
Gemma Barron ◽  
Paul Kong Thoo Lin ◽  
Giovanna Bermano

2015 ◽  
Vol 96 ◽  
pp. 264-271 ◽  
Author(s):  
Marina Gimeno ◽  
Pedro Pinczowski ◽  
Marta Pérez ◽  
Antonella Giorello ◽  
Miguel Ángel Martínez ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4941
Author(s):  
Abdelwahab Khalil ◽  
Basem H. Elesawy ◽  
Tarek M. Ali ◽  
Osama M. Ahmed

Insects of the order Hymenoptera have a defensive substance that contains many biologically active compounds. Specifically, venom from honeybees (Apis mellifera) contains many enzymes and peptides that are effective against various diseases. Different research papers stated the possibility of using bee venom (a direct bee sting or in an injectable form) in treating several complications; either in vivo or in vitro. Other reports used the active fractions of bee venom clinically or at labratory scale. Many reports and publications have stated that bee venom and its constituents have multiple biological activities including anti-microbial, anti-protozoan, anti-cancer, anti-inflammatory, and anti-arthritic properties. The present review aims to refer to the use of bee venom itself or its fractions in treating several diseases and counteracting drug toxicities as an alternative protocol of therapy. The updated molecular mechanisms of actions of bee venom and its components are discussed in light of the previous updated publications. The review also summarizes the potential of venom loaded on nanoparticles as a drug delivery vehicle and its molecular mechanisms. Finally, the products of bee venom available in markets are also demonstrated.


Sign in / Sign up

Export Citation Format

Share Document