Surface Analysis of Fretting Damage in Electrical Connectors

1988 ◽  
Vol 140 ◽  
Author(s):  
M. Braunović

AbstractA number of bolted-type tin-plated copper connectors commonly used for distribution transformers were examined using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Analysis (EDX). The connectors studied had been removed from service because of unsatisfactory performance under normal operating conditions as manifested either by overheating or instability.Detailed examination revealed the presence of extensive fretting damage in thecontacting surfaces. The fretting debris was composed mainly of tin oxide and oxidized base-metal particles. Localized melting and wear of the tin plating were also observed.

2004 ◽  
Vol 10 (6) ◽  
pp. 711-720 ◽  
Author(s):  
Bradley L. Thiel ◽  
Milos Toth ◽  
John P. Craven

A framework is presented for understanding charging processes in low vacuum scanning electron microscopy. We consider the effects of electric fields generated above and below the specimen surface and their effects on various processes taking place in the system. These processes include the formation of an ionic space charge, field-enhanced electron emission, charge trapping and dissipation, and electron–ion recombination. The physical mechanisms behind each of these processes are discussed, as are the microscope operating conditions under which each process is most effective. Readily observable effects on gas gain curves, secondary electron images, and X-ray spectra are discussed.


2015 ◽  
Vol 1731 ◽  
Author(s):  
Carlo Requião da Cunha ◽  
Fábio Dias da Silva ◽  
Renzo Morales

ABSTRACTTin oxide aerogels were synthesized using the epoxide-assisted technique and characterized with X-ray diffraction, diffusive reflectance spectroscopy, particle-induced X-ray emission and scanning electron microscopy. Our results indicate that the material is electrically semi-insulating as the result of oxygen vacancies that appear as fixed charges at the bottom of the conduction band. A modification of the technique with the addition of hydrogen peroxide is proposed to reduce the levels of defects and enhance the optical transparency of the material.


2002 ◽  
Vol 18 (8) ◽  
pp. 397-403 ◽  
Author(s):  
Duangrudee Cherdwongcharoensuk ◽  
Elisabete M Cunha ◽  
Suchart Upatham ◽  
António Sousa Pereira ◽  
Maria João R Oliveira ◽  
...  

Several heavy metals that are currently employed in industry may become polluters of work and natural environments. As particulate matter, heavy metals are suitable for entering the human body through the respiratory and digestive systems. They often end up inside phagocytes; the size of the microscopic particles modulates both their phagocytosis, and the physiology of macrophages. Here we have adopted an experimental model to investigate the ingestion of particles of three industrial heavy metals (Se, Hg, W) by murine peritoneal macrophages in vivo. The phagocytes were studied by scanning electron microscopy coupled with X-ray elemental microanalysis (SEM-XRM), a method that allows specific identification of Se, W and Hg in cells at high resolution. We found that Hg that was taken up by macrophages was organized into small, round particles (0.319 / 0.14 mm). This was in contrast with the larger size of intracellular particles of Se (2.379 / 1.84 mm) or W (1.759-1.34 mm). Ingested particles of Se and W, but not Hg, often caused bulging of the cell surface of macrophages. We conclude that particulate matters of Se, W and Hg are organized in particles of different size inside macrophages. This size difference is likely to be associated with distinct phlogistic activities of these heavy metals, Se and W causing a milder inflammatory reaction than Hg.


2001 ◽  
Vol 7 (S2) ◽  
pp. 702-703
Author(s):  
Dale E. Newbury

There is increasing interest in performing x-ray microanalysis of uncoated insulators while operating in unconventional SEM operating modes such as “low voltage” scanning electron microscopy (LVSEM), where the accelerating voltage is ≤ 5 kV and the pressure is low (<10-4 Pa), or variable pressure environmental SEM (VP-ESEM), where a selected gas is maintained at pressures in the range of 1 Pa -1000 Pa. LVSEM and VP-ESEM as microscopy techniques have proven to be extremely successful for imaging uncoated insulators through various charge dissipation mechanisms that are not available under conventional SEM operating conditions (accelerating voltage ≥ 10 kV and pressure < 10-3 Pa). in LVSEM, surface charging of insulators can often be controlled by careful choice of the accelerating voltage, sample tilt, and scan rate, while in VP-ESEM the charged species in the relatively dense gas (ions, secondary electrons) form a self-neutralizing plasma to provide an additional route for discharging the specimen.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
M. L. Zimny ◽  
A. C. Haller

During hibernation the ground squirrel is immobile, body temperature reduced and metabolism depressed. Hibernation has been shown to affect dental tissues varying degrees, although not much work has been done in this area. In limited studies, it has been shown that hibernation results in (1) mobilization of bone minerals; (2) deficient dentinogenesis and degeneration of alveolar bone; (3) presence of calculus and tears in the cementum; and (4) aggrevation of caries and pulpal and apical tooth abscesses. The purpose of this investigation was to study the effects of hibernation on dental tissues employing scanning electron microscopy (SEM) and related x-ray analyses.


Author(s):  
Yun Lu ◽  
David C. Joy

High resolution scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDXA) were performed to investigate microparticles in blended cements and their hydration products containing sodium-rich chemical wastes. The physical appearance of powder particles and the morphological development at different hydration stages were characterized by using high resolution SEM Hitachi S-900 and by SEM S-800 with a EDX spectrometer. Microparticles were dispersed on the sample holder and glued by 1% palomino solution. Hydrated bulk samples were dehydrated by acetone and mounted on the holder by silver paste. Both fracture surfaces and flat cutting sections of hydrating samples were prepared and examined. Some specimens were coated with an 3 nm thick Au-Pd or Cr layer to provide good conducting surfaces. For high resolution SEM S-900 observations the accelerating voltage of electrons was 1-2 KeV to protect the electron charging. Microchemical analyses were carried out by S800/EDS equipped with a LINK detector of take-off angle =40°.


Author(s):  
M.G. Baldini ◽  
S. Morinaga ◽  
D. Minasian ◽  
R. Feder ◽  
D. Sayre ◽  
...  

Contact X-ray imaging is presently developing as an important imaging technique in cell biology. Our recent studies on human platelets have demonstrated that the cytoskeleton of these cells contains photondense structures which can preferentially be imaged by soft X-ray imaging. Our present research has dealt with platelet activation, i.e., the complex phenomena which precede platelet appregation and are associated with profound changes in platelet cytoskeleton. Human platelets suspended in plasma were used. Whole cell mounts were fixed and dehydrated, then exposed to a stationary source of soft X-rays as previously described. Developed replicas and respective grids were studied by scanning electron microscopy (SEM).


Author(s):  
Howard S. Kaufman ◽  
Keith D. Lillemoe ◽  
John T. Mastovich ◽  
Henry A. Pitt

Gallstones contain precipitated cholesterol, calcium salts, and proteins. Calcium (Ca) bilirubinate, palmitate, phosphate, and carbonate occurring in gallstones have variable morphologies but characteristic windowless energy dispersive x-ray (EDX) spectra. Previous studies of gallstone microstructure and composition using scanning electron microscopy (SEM) with EDX have been limited to dehydrated samples. In this state, Ca bilirubinates appear as either glassy masses, which predominate in black pigment stones, or as clusters, which are found mostly in cholesterol gallstones. The three polymorphs of Ca carbonate, calcite, vaterite, and aragonite, have been identified in gallstones by x-ray diffraction, however; the morphologies of these crystals vary in the literature. The purpose of this experiment was to study fresh gallstones by environmental SEM (ESEM) to determine if dehydration affects gallstone Ca salt morphology.Gallstones and bile were obtained fresh at cholecystectomy from 6 patients. To prevent dehydration, stones were stored in bile at 37°C. All samples were studied within 4 days of procurement.


Sign in / Sign up

Export Citation Format

Share Document