Microcrystalline Silicon Films Produced by RF Magnetron Sputtering and the Effect of Diffrent Ambients on their Conductivity

1989 ◽  
Vol 164 ◽  
Author(s):  
Ratnabali Berjee ◽  
A. K. Bandyopadhyay ◽  
S. N. Sharma ◽  
A. K. Patabyal ◽  
A.K. Barua

AbstractResults on characterisation of undoped, μc-Si:H films prepared by rf magnetron sputtering technique are presented. Highly conducting films (10−3 Δ−cm−1) were obtained at fairly low rf power density (l.2W/cm2). Critical parameters for obtaining microcrystalline phase were identified. The effect of humid ambient on film properties was looked into.

2006 ◽  
Vol 514-516 ◽  
pp. 1358-1362
Author(s):  
F. Chaabouni ◽  
Luís Cadillon Costa ◽  
Mohamed Abaab ◽  
Jorge Monteiro

ZnO is a wide band gap semi-conductor that has attracted tremendous interest for its potential applications in optoelectronic, solar cell, gas detection … In this work, aluminium doped zinc oxide (ZnO:Al) films were deposited by RF magnetron sputtering on glass substrates with different RF power densities of 1.2, 2.5, 3.7 and 4.9 W/cm2. We notice that the films grown at 1.2 W/cm2 were very thin and their physical properties were not precisely determined. The electrical properties of ZnO films were investigated using the impedance spectroscopy technique in the frequency range from 5 Hz to 13 MHz. The impedance data, represented by Nyquist diagrams showed that the resistivity of the films changed during the first three months after deposition. The deposited films show good optical transmittance (over 80 %) in the visible and near infrared spectra. The band gap is around 3 eV and decreases with the increasing of the RF power density (from 3.35 to 3.05 eV). The results of this study suggest that the variation of the RF power density used for deposition allow the control of the electrical and optical properties of the films


2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Farah Lyana Shain ◽  
Azmizam Manie @ Mani ◽  
Lam Mui Li ◽  
Saafie Salleh ◽  
Afishah Alias ◽  
...  

This paper investigate the dependence of film thickness onto characteristic of Gallium doped Zinc Oxide (GZO). GZO films were deposited on a glass substrate by RF Magnetron Sputtering using GZO ceramic target with 99.99% purity. Thicknesses were altered by varying the deposition time from 10 min to 50 min meanwhile the sputtering power, argon flow and target distance were fixed in order to investigate the influence of film thickness to the growth characteristic, structural, optical properties and surface morphology of the films. Sputtering was performed with RF power of 100 watt and the argon flow was set at 10 sccm. GZO thin films on various thicknesses range from 130 nm to 460 nm were successfully deposited onto glass substrate with the crystallite grain size in range of 20.63 nm to 22.04 nm with the optical transmittance above 85 %. 


2012 ◽  
Vol 24 (4) ◽  
pp. 1203-1207 ◽  
Author(s):  
Guanhuan Lei ◽  
Hongwei Chen ◽  
Shanxue Zheng ◽  
Feizhi Lou ◽  
Linling Chen ◽  
...  

2011 ◽  
Vol 493-494 ◽  
pp. 473-476
Author(s):  
E.O. Lopez ◽  
F.F. Borghi ◽  
Alexandre Mello ◽  
J. Gomes ◽  
Antonella M. Rossi

In this present work, we characterize HAp thin films deposited by dual magnetron sputtering device DMS on silicon (Si/HAp). The sputtering RF power was varied from 90 watts to 120 watts and deposition times from 60 to 180 minutes. The argon and oxygen pressure were fixed at 5.0 mTorr and 1.0 mTorr, respectively. Grazing incidence X-ray diffraction (GIXRD) from synchrotron radiation, infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used for the structural characterization. At lower deposition times, a crystalline phase with preferential orientation along apatite (002) and a disordered nanocrystalline phase were identified. The coating crystallinity was improved with the increase of the deposition time besides the sputtering power.


2012 ◽  
Vol 626 ◽  
pp. 168-172
Author(s):  
Samsiah Ahmad ◽  
Nor Diyana Md Sin ◽  
M.N. Berhan ◽  
Mohamad Rusop

Zinc Oxide (ZnO) thin films were deposited onto SiO2/Si substrates using radio frequency (RF) magnetron sputtering method as an Ammonia (NH3) sensor. The dependence of RF power (50~300 Watt) on the structural properties and sensitivity of NH3sensor were investigated. XRD analysis shows that regardless of the RF power, all samples display the preferred orientation on the (002) plane. The results show that the ZnO deposited at 200 Watt display the highest sensitivity value which is 44%.


2013 ◽  
Vol 873 ◽  
pp. 426-430
Author(s):  
Xian Wu Xiu ◽  
Li Xu ◽  
Cheng Qiang Zhang

Molybdenum-doped zinc oxide (MZO) films have been prepared by RF magnetron sputtering on glass substrates at room temperature. The structural, electrical and optical properties of the films vary with sputtering power from 15 W to 70 W are investigated. X-ray diffraction (XRD) analysis reveals that all the films are polycrystalline with the hexagonal structure and have a preferred orientation along thecaxis perpendicular to the substrate. The resistivity increases with the increase of the RF power. The lowest resistivity achieved is 5.4×10-3Ω cm at a RF power of 15 W with a Hall mobility of 11 cm2V-1s-1and a carrier concentration of 1.1×1019cm-3. The average transmittance drops from 85% to 81% in the visible range and the optical band gap decreases from 3.26 eV to 3.19 eV with the increase of the RF power.


Tribology ◽  
2006 ◽  
Author(s):  
A. H. Jayatissa ◽  
D. Wagner ◽  
S. Sorin ◽  
N. X. Randall

The mechanical properties of CrN films coated by radio frequency (rf) magnetron sputtering method were investigated. CrN films were coated on stainless steel, silicon wafer and glass substrates using sputtering of a Cr target in nitrogen ambient. The films were coated by varying the deposition temperature, nitrogen partial pressure and rf power density. The films coated were characterized by nanoindentation method, microhardness, optical, and corrosion tests. In order to use CrN as mechanical coating material, the surface roughness, hardness and adhesion properties have to be determined. The film properties were measured using atomic force microscopy and nanoindentation method and analyzed as a function of deposition conditions. It was found that these properties can be varied by changing the deposition conditions.


Sign in / Sign up

Export Citation Format

Share Document