scholarly journals Characterization of Chemically Prepared PZT Thin Films

1990 ◽  
Vol 200 ◽  
Author(s):  
Bruce A. Tuttle ◽  
R.W. Schwartz ◽  
D.H. Doughty ◽  
J.A. Voigt ◽  
A.H. Carim

ABSTRACTWe have systematically varied processing parameters to fabricate PZT 53/47 thin films. Polycrystalline PZT thin films were fabricated by spin depositing Pt coated Sio2/Si substrates with alkoxide solutions. Our study focused on two process parameters: 1) heating rate and 2) excess Pb additions. We used rapid thermal processing techniques to vary heating rates from 3°C/min to 8400°C/min. Films were characterized with the following excess Pb additions: 0, 3, 5, and 10 mol% For all process variations, films with greater perovskite content had better ferroelectric properties. Our best films were fabricated using the following process parameters: an excess Pb addition of 5 mol%, a heating rate of 8400°C/min and annealing conditions of 700°C for 1 min. Films fabricated using these process conditions had a remanent polarization of 0.27 C/m2and a coercive field of 3.4 MV/m.

1991 ◽  
Vol 243 ◽  
Author(s):  
C. K. Chiang ◽  
W. Wong-Ng ◽  
L. P. Cook ◽  
P. K. Schenck ◽  
H. M. Lee ◽  
...  

AbstractPZT thin films were prepared by pulsed laser deposition on unheated Ptcoated Si substrates. As deposited, the films were amorphous. Films crystallized at 550 - 600 °C to produce predominantly crystalline ferroelectric PZT. Crystallization of the amorphous material was accompanied by a linear shrinkage of ∼2 %, as manifested in development of cracks in the film. Spacing, width and morphology of larger cracks followed a regular progression with decreasing film thickness. For film thicknesses less than 500 runm, much of the shrinkage was taken up by small, closely-spaced cracks of local extent. Implications for measurement of PZT thin film ferroelectric properties and processing are discussed.


1998 ◽  
Vol 541 ◽  
Author(s):  
Chang Jung Kim ◽  
Tae-Young Kim ◽  
Ilsub Chung ◽  
In Kyung Yoo

AbstractThe PZT thin films were fabricated to investigate the effect of sol-gel processing parameters on the physical and the electrical properties. The films were made with different amount of excess Pb precursors and drying temperatures, and then annealed in various ambients. The physical properties of the films such as crystallinity and microstructure were evaluated using x-ray diffraction, scanning electron microscopy and atomic force microscopy. The ferroelectric properties and current density characteristics of the films were investigated using a standarized feiroelectric test system and pA meter, respectively. It is found that the drying temperature was playing a key role in the formation of the secondary phase on the PZT thin films. In addition, it turned out that the use of nitrogen as an annealing ambient promoted overall ferroelectric properties, when compared to oxygen ambients.


2005 ◽  
Vol 902 ◽  
Author(s):  
Li Dong Hua ◽  
Eun Sun Lee ◽  
Hyun Woo Chung ◽  
Byung Du Ahn ◽  
Sang Yeol Lee

AbstractThe Hysteresis characteristics of below 400 nm- thick Pb(Zr0.52Ti0.48)O3 (PZT) thin films grown on Pt (111) /Ti/SiO2/Si substrates have showed very poor with remanent polarization of 1∼3 μC/cm2 in our previous research. To study the further scaling-down, we introduced the method of our previous research that the (Pb0.72La0.28)Ti0.94O3 (PLT) buffer layers play an important role in enhancing the ferroelectric properties of the PZT thin films. As a result, the remanent polarization of 300 nm-thick PZT thin films with the 10 nm-thick PLT buffer layers have showed 32 μC/cm2 at applied voltage of 8 V and 24 μC/cm2 at applied voltage of 5 V. Inserted the PLT seed layers between the PZT thin films and substrate, the hysteresis characteristics of PZT thin films were improved a lot. The dielectric and leakage current properties of PZT thin films were also investigated.


1997 ◽  
Vol 493 ◽  
Author(s):  
Tingkai Li ◽  
Elliot Hartford ◽  
Pete Zawadzki ◽  
Richard A. Stall

ABSTRACTAn advanced oxide MOCVD tool and processes have been developed to deposit large area PbZr1−xTixO3 (PZT) thin films on 6” Si and Pt/Ti/SiO2/Si substrates. The experimental results show the advanced oxide MOCVD tool can achieve the growth of PZT thin films with thickness uniformity of 2% and composition uniformity better that 3% on both 6” Si and Pt/Ti/SiO,/Si wafers at high deposition rates. X-ray patterns showed a single PZT perovskite phase, and AFM showed homogeneous microstructure and low surface roughness. Typically, 300 nm thick PZT films with a grain size about 0.3 μm have Pr greater than 20 - 30 μC/cm2 at 5V, a dielectric constant around 1000, low coercive field (Ec 50 - 70 kV/cm), and fatigue rate (the normalized polarization is about 0.6 after 1010 cycles at 5 V), and leakage current of 2 - 6×lO−7 A/cm2 at 150 kV/cm and room temperature on Pt electrodes. In addition, the effects of reactor design and process conditions on the thickness and composition uniformity, as well as the m i ero structure and properties were also investigated.


2005 ◽  
Vol 902 ◽  
Author(s):  
Jochen Puchalla ◽  
Susanne Hoffmann-Eifert ◽  
Lorena Cattaneo ◽  
Sergio Carella ◽  
Rainer Waser

AbstractHigh quality Pb(Zr,Ti)O3 [PZT] and (Pb1-xBax)(ZryTi1-y)O3 (x ≤ 0.15, 0.25 ≤ y ≤ 0.50) [PBZT] thin films were grown on Pt (111) and Ir (111) coated silicon substrates by means of a pulsed liquid injection metal organic chemical vapor deposition (MOCVD) technique. The precursor solutions of Pb(DPM)2, Ba(DPM)2, Zr(IBPM)4, and Ti(OiPr)2(DPM)2 dissolved in butylacetate were separately injected into an AIX-200 reactor using a TriJet™ vaporizer. Stoichiometric films (0.98 ≤ A/B ≤ 1.06) with thickness between 80 nm and 150 nm were deposited at a susceptor temperature of 615 °C to 660 °C. Pure PZT films grown on platinum coated substrates show a randomly oriented perovskite structure accompanied with formation of a PbPtx alloy at the PZT/Pt interface. On the Ir(111) coated substrates the pure PZT films also exhibit a random orientation possibly due to oxidation of the Ir surface layer during the deposition process. Ferroelectric properties of Pr = 35 µC/cm2 and Ec = 90 kV/cm were obtained for a PZT (30/70) film of 150 nm thickness grown on Ir/Si. In contrast, PBZT films with a Ba content of about 5 to 15% show lower tendency for formation of a PbPtx interfacial layer, and a preferred (111) texture was observed for PBZT films grown on the Ir (111) substrates under optimized process conditions. Tetragonal and rhombohedral PBZT films with 15% Ba and a Zr-content of about 0.35 and 0.50, respectively, show an orientation dependence of the ferroelectric properties in the way that Ec is highest for <111> textured films in comparison to Ec determined for <110> textured films. The remanent polarization of 85 nm thick tetragonal PBZT films changes from 17 µC/cm2 for <111> orientation to 13.5 µC/cm2 for <110> texture. The relative permittivity changes in the same way from 600 to 540, respectively. The rhombohedral films exhibit a nearly independent Pr value of about 11 µC/cm2 while the switching field changes from 75 kV/cm for an <111> textured film to 46 kV/cm for an (110) textured one. The relative permittivity values of both films are 890 and 715 for the (110) and the (111) textured films, respectively. The trends observed for the textured PBZT films grown on Si substrates reflect the behaviour reported for epitaxial films [2]


1998 ◽  
Vol 541 ◽  
Author(s):  
S. Tirumala ◽  
S. O. Ryu ◽  
K. B. Lee ◽  
R. Vedula ◽  
S. B. Desu

AbstractThe effect of various electrode materials on the ferroelectric properties of SrBi2Ta2O9 (SBT) thin films has been investigated for non-volatile memory applications. Two sets of electrode structures, viz., Pt-Ir based and Pt-Rh based, were sputter deposited in-situ on Si substrates. SBT thin films were deposited on these electrodes using a metal-organic solution deposition technique followed by a post-deposition anneal at 750 °C in oxygen. Structural characterization revealed a polycrystalline nature with predominant perovskite phase in SBT thin films. Ferroelectric properties were studied in capacitor mode by depositing top electrodes, where the top electrode material is identical to that of the bottom electrode. Extensive analysis of the ferroelectric properties signify the important role played by the electrode material in establishing the device applicability is reported in this work.


1997 ◽  
Vol 493 ◽  
Author(s):  
Seung-Hyun Kim ◽  
J. G. Hong ◽  
J. C. Gunter ◽  
H. Y. Lee ◽  
S. K. Streiffer ◽  
...  

ABSTRACTFerroelectric PZT thin films on thin RuO2 (10, 30, 50nm)/Pt hybrid bottom electrodes were successfully prepared by using a modified chemical solution deposition method. It was observed that the use of a lOnm RuO2Pt bottom electrode reduced leakage current, and gave more reliable capacitors with good microstructure compare to the use of thicker RuO2/Pt bottom electrodes. Typical P-E hysteresis behavior was observed even at an applied voltage of 3V, demonstrating greatly improved remanence and coercivity. Fatigue and breakdown characteristics, measured at 5V, showed stable behavior, and only below 13-15% degradation was observed up to 1010 cycles. Thicker RuO2 layers resulted in high leakage current density due to conducting lead ruthenate or PZT pyrochlore-ruthenate and a rosette-type microstructure.


2011 ◽  
Vol 197-198 ◽  
pp. 1781-1784
Author(s):  
Hua Wang ◽  
Jian Li ◽  
Ji Wen Xu ◽  
Ling Yang ◽  
Shang Ju Zhou

Intergrowth-superlattice-structured SrBi4Ti4O15–Bi4Ti3O12(SBT–BIT) films prepared on p-Si substrates by sol-gel processing. Synthesized SBT–BIT films exhibit good ferroelectric properties. As the annealing temperature increases from 600°C to 700°C, the remanent polarization Prof SBT–BIT films increases, while the coercive electric field Ecdecreases. SBT–BIT films annealed at 700°C have a Prvalue of 18.9µC/cm2which is higher than that of SBT (16.8µC/cm2) and BIT (14.6µC/cm2), and have the lowest Ecof 142 kV/cm which is almost the same as that of SBT and BIT. The C-V curves of Ag/SBT-BIT/p-Si heterostructures show the clockwise hysteresis loops which reveal the memory effect due to the polarization. The memory window in C-V curve of Ag/SBT-BIT/p-Si is larger than that of Ag/SBT/p-Si heterostructure or Ag/BIT/p-Si heterostructure.


2010 ◽  
Vol 663-665 ◽  
pp. 650-653
Author(s):  
Jin Moo Byun ◽  
Jeong Sun Han ◽  
Jae Hyoung Park ◽  
Seong Eui Lee ◽  
Hee Chul Lee

This study examined the effect of crystalline orientation and dopants such as Nb and Zn on the piezoelectric coefficient of sol-gel driven Pb1(Zr0.52Ti0.48)O3(PZT) and doped PZT thin films. Crack-free 1-μm-thick PZT and doped PZT thin films prepared by using 2-Methoxyethanol-based sol-gel method were fabricated on Pt/Ti/SiO2/Si substrates. The highly (111) oriented PZT thin films of pure perovskite structure could be obtained by controlling various parameters such as a PbTiO3 seed layer and a concentration of sol-gel solution. The Nb-Zn doped PZT thin films exhibited high piezoelectric coefficient which was about 50 % higher than that of undoped PZT thin film. The highest measured piezoelectric coefficient was 240 pC/N, which could be applicable to piezoelectrically operated MEMS actuator, sensor, or energy harvester devices.


Sign in / Sign up

Export Citation Format

Share Document