Influence of Interface Modification in Fiber Reinforced Cement Composites on Their Properties

1990 ◽  
Vol 211 ◽  
Author(s):  
Chen Zhi Yuan ◽  
Cheng Qing Hua ◽  
Gao Feng

AbstractThis research aims at a further exploration of surface treatments of carbon fibers to improve the performance of CFRC. Two approaches to treat carbon fibers were used in this study. SEM, IR, XRD were used to analyse the CFRC prepared with treated carbon fibers. Because of strong adhesion, CFRC prepared using CF with treatment has a better performance than that without treatment. Flexural strength is 30% higher, tensile strength is 48% higher, impact strength 63% higher, and deflection is increased.

2014 ◽  
Vol 910 ◽  
pp. 153-156
Author(s):  
Ching Wen Lou ◽  
Jo Mei Liao ◽  
Zheng Lan Lin ◽  
Jia Horng Lin

This study uses carbon fibers (CF) to reinforce polylactic acid (PLA) matrices to form CF/PLA biocomposites. Tensile test, flexural test, and impact test are performed on biocomposites to evaluate their mechanical properties. The results of tests show that an increment of the CF content results in an increase in tensile strength, flexural strength, flexural modulus, and impact strength. The combination of 15 wt% CF provides the resulting biocomposites with a 72 % increase in tensile strength, a 322 % increase in flexural modulus, and a 96 % increase in impact strength.


2014 ◽  
Vol 1025-1026 ◽  
pp. 215-220 ◽  
Author(s):  
Sasirada Weerasunthorn ◽  
Pranut Potiyaraj

Fumed silica particles (SiO2) were directly added into poly (butylene succinate) (PBS) by melt mixing process. The effects of amount of fumed silica particles on mechanical properties of PBS/fumed silica composites, those are tensile strength, tensile modulus, impact strength as well as flexural strength, were investigated. It was found that the mechanical properties decreased with increasing fumed silica loading (0-3 wt%). In order to increase polymer-filler interaction, fumed silica was treated with 3-glycidyloxypropyl trimethoxysilane (GPMS), and its structure was analyzed by FT-IR spectrophotometry. The PBS/modified was found to possess better tensile strength, tensile modulus, impact strength and flexural strength that those of PBS/fumed silica composites.


2011 ◽  
Vol 236-238 ◽  
pp. 1725-1730 ◽  
Author(s):  
Wei Jen Chen ◽  
Ming Yuan Shen ◽  
Yi Luen Li ◽  
Chin Lung Chiang ◽  
Ming Chuen Yip

This study used carbon aerogels (CA) and phenolic resin in fixed proportations to produce nano high polymer resin, and used poly ehtylene oxide (PEO) as the modifying agent for phenolic resin to improve the mechanical properties of phenolic resin and promote the surface conductivity. The prepared nano high polymer resin and carbon cloth were made into nano-prepreg by using ultrasonic impregnation method, and a nano-prepreg composite material was prepared by using hot compacting and cut to test pieces to measure its mechanical properties and surface conductivity as well as the influence of temperature-humidity environment (85°C/168hr and 85°C/85%RH/168hr) on mechanical properties. The result showed that the surface conductivity increased by 64.55%, the tensile strength at room temperature increased by 35.7%, the flexural strength increased by 18.4%, and the impact strength increased by 101%. In hot environment (85°C/168hr), the tensile strength decreased by 23.8%, the flexural strength increased by 3.1%, and the impact strength increased by 84.6%. In high temperature-high humidity environment (85°C/85% RH/168hr), the tensile strength decreased by 29.6%, the flexural strength decreased by 17%, and the impact strength increased by 95.7%.Introduction


2011 ◽  
Vol 31 (6-7) ◽  
Author(s):  
Xiuju Zhang ◽  
Juncai Shen ◽  
Tingting Yang ◽  
Bihua Ye ◽  
Zhidan Lin ◽  
...  

Abstract In this study, waste cotton cloth (RC) was bonded with soluble starches as an adhesive, then dried, cut into particles and filled into polylactic acid (PLA) to achieve resource efficiency. The mechanical, thermal and crystallization properties of the composites were characterized. The results indicated that with the addition of RC, the tensile strength, impact strength and flexural strength of PLA composites improved. Also, the heat distortion temperatures increased slowly, indicating that RC filled into PLA can be turned back into useful items without the degradation of PLA composites. This is a good way to give direction to the resource utilization of waste clothing. The addition of RC could significantly reduce the spherulitic size of PLA.


Author(s):  
Mostafa Hassani Niaki ◽  
Morteza Ghorbanzadeh Ahangari ◽  
Abdolhossein Fereidoon

This paper studies the mechanical properties of polymer concrete (PC) with three types of resin systems. First, the effect of 0.5 wt% up to 3 wt% basalt fiber on the mechanical properties of a quaternary epoxy-based PC is investigated experimentally, and the best weight percentage of basalt fiber is obtained. The results show that adding basalt fiber to PC caused the greatest enhancement within 10% in compressive strength, 10% in flexural strength, 35% in the splitting tensile strength, and 315% in impact strength. In the next step, the effect of nanoclay particles on the mechanical properties of basalt fiber-reinforced PC (BFRPC) is analyzed experimentally. Nanoclays increase the compressive strength up to 7%, flexural strength up to 27%, and impact strength up to 260% but decrease the tensile strength of the PC. Field-emission scanning electron microscopy (FESEM) analysis is performed to study the fracture surface and morphology of various concrete specimens. In the last step, we consider the effect of two other different resin systems, rigid polyurethane and rigid polyurethane foam on the mechanical properties of reinforced polymer concrete. A comparison study presents that the epoxy PC has a higher specific strength than the polyurethane and ultra-lightweight polyurethane foam PC.


Author(s):  
Sun-Woo Kim ◽  
Wan-Shin Park ◽  
Young-Il Jang ◽  
Yi-Hyun Nam ◽  
Sun-Woong Kim ◽  
...  

Conventional cement composite is generally produced with ordinary Portland cement (OPC) as a binder. However, during manufacturing the cement composite, large amount of carbon dioxide (CO2) are emitted. Therefore, fly ash is proposed to be replaced to OPC in order to reduce CO2 emission of cement composites. For reinforcing fibers, micro steel fibers were used. For investigating mechanical properties of steel fiber-reinforced cement composites (SFRCCs), direct tension tests were conducted. The test results showed that fly ash improves tensile strength and ductility of SFRCCs. However, tensile strength of the SFRCC decreased as replacement ratio of recycled fine aggregate increased. The use of recycled materials in FRCC helps to save natural resources and promote sustainability in civil engineering materials.


2019 ◽  
Vol 45 (4) ◽  
pp. 4661-4666 ◽  
Author(s):  
Kai Wang ◽  
Mian Li ◽  
Yanqin Liang ◽  
Jie Wang ◽  
Liu He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document