Growth Process of Si and GaAs in the Heterostructure GaAs/Si/GaAs(100).

1991 ◽  
Vol 237 ◽  
Author(s):  
M. Lopez ◽  
Y. Takano ◽  
K. Pak ◽  
H. Yonezu

ABSTRACTThe growth mode of Si on GaAs(100) substrates and that of GaAs on very thin (1/4 ∼ 3 ML) Si films grown pseudomorphically on GaAs was investigated by observing the behavior of the reflection-high energy electron diffraction (RHEED) specular spot intensity. From the presence of RHEED oscillations during the initial stage of the growth of Si on GaAs we infer a two-dimensional growth with nucleation on the terraces up to a thickness of 3 ML. During the posterior growth of GaAs on the pseudomorphic Si films, a tendency towards three dimensional growth was observed. This tendency increased with the Si interlayer thickness. The causes of the formation of these islands are discussed.

2003 ◽  
Vol 10 (04) ◽  
pp. 669-675
Author(s):  
F. S. Gard ◽  
J. D. Riley ◽  
R. Leckey ◽  
B. F. Usher

ZnSe epilayers have been grown under various Se/Zn atomic flux ratios in the range of 0.22–2.45 at a substrate temperature of 350°C on Zn pre-exposed GaAs (111) A surfaces. Real time reflection high energy electron diffraction (RHEED) observations have shown a transition from a two-dimensional (2D) to a three-dimensional (3D) growth mode. The transition time depends directly upon the growth rate. A detailed discussion is presented to explore the cause of this change in the growth mode.


1998 ◽  
Vol 537 ◽  
Author(s):  
S. Wilson ◽  
C. S. Dickens ◽  
J. Griffin ◽  
M. G. Spencer

AbstractA comparison study of the growth of aluminum nitride (AIN) single crystal epitaxy on 6H-SiC and 4H-SiC substrates has been performed. The material has been characterized using atomic force microscopy (AFM) and reflective high energy electron diffraction (RHEED). AIN crystals were deposited on the following 6H-SiC substrates: singular with and without an initial SiC epilayer, and 3.5° off-axis with and without an initial SIC epilayer. AIN crystals were deposited on 8.0° off-axis 4H-SiC with and without initial SIC epilayers. AFM shows that the deposition of AIN on 6H-SiC and 4H-SIC with an initial SiC epilayer displays high quality quasi-two dimensional growth as atomically flat or step flow epitaxy.


2021 ◽  
Vol 33 (11) ◽  
pp. 115603
Author(s):  
Vladimir V Dirko ◽  
Kirill A Lozovoy ◽  
Andrey P Kokhanenko ◽  
Alexander V Voitsekhovskii

Abstract In this paper, we analyze superstructural transitions during epitaxial growth of two-dimensional layers and the formation of quantum dots by the Stranski–Krastanov mechanism in elastically stressed systems by the reflection high-energy electron diffraction method. Detailed dependences of the periodicity parameter N of the 2 × N reconstruction on the effective thickness of the deposited material in a wide range of growth temperatures during epitaxy of germanium on a silicon surface with a crystallographic orientation (001) are obtained. Superstructural transitions and the change in the value of the parameter N at low temperatures of epitaxy in this system have been investigated for the first time. It is shown that the length of dimer rows in such a reconstruction during the growth of pure germanium on silicon can reach a value of no less than N = 11. A relationship is found between the value of the parameter N, determined by elastic strains in the system, and the critical thickness of the transition from two-dimensional to three-dimensional growth. Based on this relationship, a physical mechanism is proposed that explains the nature of the temperature dependence of the critical thickness of the Stranski–Krastanov transition, which has been the subject of constant scientific disputes until now.


1999 ◽  
Vol 4 (S1) ◽  
pp. 344-350
Author(s):  
S. Wilson ◽  
C. S. Dickens ◽  
J. Griffin ◽  
M. G. Spencer

A comparison study of the growth of aluminum nitride (AlN) single crystal epitaxy on 6H-SiC and 4H-SiC substrates has been performed. The material has been characterized using atomic force microscopy (AFM) and reflective high energy electron diffraction (RHEED). AlN crystals were deposited on the following 6H-SiC substrates: singular with and without an initial SiC epilayer, and 3.5° off-axis with and without an initial SiC epilayer. AlN crystals were deposited on 8.0° off-axis 4H-SiC with and without initial SiC epilayers. AFM shows that the deposition of AlN on 6H-SiC and 4H-SiC with an initial SiC epilayer displays high quality quasi-two dimensional growth as atomically flat or step flow epitaxy.


2002 ◽  
Vol 747 ◽  
Author(s):  
V. Narayanan ◽  
S. Guha ◽  
N. A. Bojarczuk ◽  
M. Copel

ABSTRACTGrowth of epitaxial Si epitaxial overlayers on lattice matched (LaxY1-x)2O3/Si (LaYO/Si) structures has been investigated by high resolution transmission electron microscopy and reflection high energy electron diffraction. Results indicate that smooth two-dimensional near lattice-matched LaYO (111) films can be grown on Si (111) substrates. However, subsequent Si epitaxial growth on the LaYO/Si structures nucleates as three-dimensional islands, a consequence of the high energy of the Si overlayer/LaYO interface. We have investigated the effect of growth temperature on the microstructure of the Si overlayers. Higher temperatures resulted in the nucleation of large faceted islands and rough overlayers while lower temperatures result in smaller islands that coalesce at an early stage and produce smoother films. In addition, formation of planar defects in these films is attributed to stacking errors on the {111} facets of initial Si islands with lower temperatures resulting in a higher density of stacking faults and twins.


Author(s):  
M. Gajdardziska-Josifovska

Parabolas have been observed in the reflection high-energy electron diffraction (RHEED) patterns from surfaces of single crystals since the early thirties. In the last decade there has been a revival of attempts to elucidate the origin of these surface parabolas. The renewed interest stems from the need to understand the connection between the parabolas and the surface resonance (channeling) condition, the latter being routinely used to obtain higher intensity in reflection electron microscopy (REM) images of surfaces. Several rather diverging descriptions have been proposed to explain the parabolas in the reflection and transmission Kikuchi patterns. Recently we have developed an unifying general treatment in which the parabolas are shown to be K-lines of two-dimensional lattices. Here we want to review the main features of this description and present an experimental diffraction pattern from a 30° MgO (111) surface which displays parabolas that can be attributed to the surface reconstruction.


Sign in / Sign up

Export Citation Format

Share Document