Effect of Near-Interface Concentration Change on Barrier Height in Ion-Bombarded and Heat-Treated GaAs Schottky Contacts

1992 ◽  
Vol 260 ◽  
Author(s):  
ZS. J. Horváth

ABSTRACTThe change of the doping concentration (including type) near the metal-semiconductor interface influences the Schottky barrier height (BH). In many cases this phenomenon is apparently spontaneous, or it is a side effect of the technology. The goal of this paper is to summarize the effect of the near-interface concentration change on the apparent and real Schottky BHs, and to demonstrate its importance with experimental results obtained in GaAs Schottky contacts. The question of the definition of the real BH for some of these structures is also treated.

2019 ◽  
Vol 9 (23) ◽  
pp. 5014
Author(s):  
Courtin ◽  
Moréac ◽  
Delhaye ◽  
Lépine ◽  
Tricot ◽  
...  

Fermi level pinning at metal/semiconductor interfaces forbids a total control over the Schottky barrier height. 2D materials may be an interesting route to circumvent this problem. As they weakly interact with their substrate through Van der Waals forces, deposition of 2D materials avoids the formation of the large density of state at the semiconductor interface often responsible for Fermi level pinning. Here, we demonstrate the possibility to alleviate Fermi-level pinning and reduce the Schottky barrier height by the association of surface passivation of germanium with the deposition of 2D graphene.


2011 ◽  
Vol 50 ◽  
pp. 036603 ◽  
Author(s):  
Masashi Kato ◽  
Hidenori Ono ◽  
Masaya Ichimura ◽  
Gan Feng ◽  
Tsunenobu Kimoto

2012 ◽  
Vol 90 (1) ◽  
pp. 73-81 ◽  
Author(s):  
V. Lakshmi Devi ◽  
I. Jyothi ◽  
V. Rajagopal Reddy

In this work, we have investigated the electrical characteristics of Au–Cu–n-InP Schottky contacts by current–voltage (I–V) and capacitance–voltage (C–V) measurements in the temperature range 260–420 K in steps of 20 K. The diode parameters, such as the ideality factor, n, and zero-bias barrier height, Φb0, have been found to be strongly temperature dependent. It has been found that the zero-bias barrier height, Φb0(I–V), increases and the ideality factor, n, decreases with an increase in temperature. The forward I–V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the assumption of gaussian distribution of barrier heights, due to barrier inhomogeneities that prevail at the metal–semiconductor interface. The zero-bias barrier height Φb0 versus 1/2kT plot has been drawn to obtain the evidence of a gaussian distribution of the barrier heights. The corresponding values are Φb0 = 1.16 eV and σ0 = 159 meV for the mean barrier height and standard deviation, respectively. The modified Richardson plot has given mean barrier height, Φb0, and Richardson constant, A**, as 1.15 eV and 7.34 Acm−2K−2, respectively, which is close to the theoretical value of 9.4 Acm−2K−2. Barrier heights obtained from C–V measurements are higher than those obtained from I–V measurements. This inconsistency between Schottky barrier heights (SBHs) obtained from I–V and C–V measurements was also interpreted. The temperature dependence of the I–V characteristics of the Au–Cu–n-InP Schottky diode has been explained on the basis of TE mechanism with gaussian distribution of the SBHs.


1994 ◽  
Vol 337 ◽  
Author(s):  
C-P. Chen ◽  
Y. A. Chang ◽  
T.F. Kuech

ABSTRACTA systematic study of the enhancement of Schottky barriers to n-GaAs diodes has been carried out using the Ni-Al binary system. The diodes, Ni2Al3/n-GaAs, Ni2Al3/Ni/n-GaAs, Ni/Al/Ni/n-GaAs and NiAl/Al/Ni/n-GaAs, have been realized by sputter deposition at a base pressure ∼2xl0-7 Torr. A high Schottky barrier height ranging from 0.95 to 0.98 eV (deduced from current-voltage measurements) was observed for all the annealed contacts except for Ni2Al3/n-GaAs contacts. The enhancement of the Schottky barrier height in all the contacts was attributed to the formation of a high Al content (Al,Ga)As layer at the metal/semiconductor interface. The formation of this (Al,Ga)As layer was explained in terms of a regrowth mechanism. In this mechanism, Ni reacts with GaAs initially at low temperatures, forming NixGaAs. The NixGaAs layer is believed to react with the Ni-Al layer to form the (Al,Ga)As layer when subjected to a high temperature annealing. A (200) dark field XTEM image of the annealed contact was used to demonstrate the existence of this (Al,Ga)As phase.


2005 ◽  
Vol 864 ◽  
Author(s):  
M. Li ◽  
W. A. Anderson

AbstractMetal-Semiconductor-Metal photodetectors (MSM-PD's) and simple Schottky diodes were fabricated using a low temperature (LT) technique to greatly reduce the device dark current. LT processing for metal deposition increased Schottky barrier height by improving the interface between metal and semiconductor to reduce the leakage current of the device. The structure consists of a 20 Å oxide over the active area to passivate surface states, a thicker oxide under contact pads to reduce dark current and the interdigitated Schottky contacts. A comparison was made for Schottky metal deposited with the substrate at 25 °C or -50 °C (LT). The devices fabricated using the LT process had better I-V characteristics compared to detectors fabricated using the standard room temperature (RT) metal deposition technique. The dark current for the LT film was found to be one to three orders lower in magnitude compared to the film deposited at RT. In one case, for example, the dark current was significantly reduced from 1.69 nA to 4.58 pA at 1.0 V. The active area for the device was determined to be 36 × 50 μm2 with 4 μm electrode width and 4 μm electrode spacing. Additionally, LT-MSM-PD's exhibited an excellent linear relationship between the photo-current and the incident light power. The Schottky barrier height for LT processing was found to be 0.79 eV; however, this value was 0.1 eV more than that of the same contact obtained by RT processing.


2016 ◽  
Vol 119 (9) ◽  
pp. 095302 ◽  
Author(s):  
Robert Balsano ◽  
Chris Durcan ◽  
Akitomo Matsubayashi ◽  
Avyaya J. Narasimham ◽  
Vincent P. LaBella

1992 ◽  
Vol 260 ◽  
Author(s):  
ZS. J. Horváth

ABSTRACTExperimental capacitance-voltage (C-V) characteristics are presented for Au/n-GaAs Schottky contacts. The deviation of the obtained C-V characteristics from the theoretical one including the linear regions of the 1/Ca-V plot may be explained by either the normal or the lognormal lateral distribution of the barrier height. It is concluded that from physical point of view the lognormal lateral distribution of the Schottky barrier height proposed first in this work, is more likely than the normal distribution.


2013 ◽  
Vol 284-287 ◽  
pp. 241-244 ◽  
Author(s):  
Chi Yu Wang ◽  
Hung Pin Shiao ◽  
Po Wei Shieh ◽  
Hsin Hua Chang

Abstract. The effects of thermal annealing on the electrical and interfacial structure properties of Ni/Au on n-type GaN Schottky contacts were investigated by current-voltage (I-V) . Based on the I-V measurement study, it was found that the Schottky barrier height increased when the contact was annealed in the 300 °C – 400 °C temperature range. A drastic improvement of the Schottky barrier height was attained by thermal annealing at 400 °C for 10 minutes. However, it degraded when the annealing temperature exceeded 500 °C. The contact annealed at 550 °C showed nonrectifying behavior. For this paper, the GaN metal-semiconductor-metal (MSM) ultraviolet photodetectors were fabricated using Ni/Au Schottky contacts. As expected, compared with the MSM detector without the thermal annealing process, the dark current of the MSM device with the 400 °C thermal annealing process drastically decreased as much as three orders of magnitude, due to the enhancement of the Schottky barrier height


Sign in / Sign up

Export Citation Format

Share Document