Transmission Electron Microscopy of Hydrogen-Induced Defects in Low Temperature Epitaxial Silicon

1992 ◽  
Vol 262 ◽  
Author(s):  
G. B. Anderson ◽  
C. C. Tsai ◽  
R. Thompson

ABSTRACTHydrogen is commonly used in crystalline Si for passivation of defects and impurities. When single crystal Si undergoes a post-hydrogenation step, hydrogen-induced platelets have been shown to form in the first 100 nm of the Si. The same hydrogen platelets occur in homoepitaxial Si grown by low temperature (350°C or below) plasma-enhanced chemical vapor deposition with hydrogen dilution. This study has used transmission electron microscopy (TEM) to examine the structure of these hydrogen-induced platelets. TEM has shown that the platelets generally grow in tne (111) crystal planes of the Si. The size of the platelets, which ranges from 5 to 100 nm, increases with growth temperature but the density of platelets decrease at higher growth temperatures. The hydrogen platelets are not confined to the epitaxial Si layer only but also grow into the substrate. High resolution TEM shows the platelets dilate the silicon lattice by approximately 60% of a Si <111> plane. TEM has also shown that platelets cause no net displacement of the local Si lattice. Tilting experiments performed in the TEM show that the platelets are composed of a circular two-dimensional structure. Our results indicate that the hydrogen-induced platelets found in low temperature epitaxial Si are structurally the same as those seen in crystalline Si that has undergone post-hydrogenation processes.

Author(s):  
R.L. Sabatini ◽  
Yimei Zhu ◽  
Masaki Suenaga ◽  
A.R. Moodenbaugh

Low temperature annealing (<400°C) of YBa2Cu3O7x in a ozone containing oxygen atmosphere is sometimes carried out to oxygenate oxygen deficient thin films. Also, this technique can be used to fully oxygenate thinned TEM specimens when oxygen depletion in thin regions is suspected. However, the effects on the microstructure nor the extent of oxygenation of specimens has not been documented for specimens exposed to an ozone atmosphere. A particular concern is the fact that the ozone gas is so reactive and the oxygen diffusion rate at these temperatures is so slow that it may damage the specimen by an over-reaction. Thus we report here the results of an investigation on the microstructural effects of exposing a thinned YBa2Cu3O7-x specimen in an ozone atmosphere using transmission electron microscopy and energy loss spectroscopy techniques.


Author(s):  
K. Doong ◽  
J.-M. Fu ◽  
Y.-C. Huang

Abstract The specimen preparation technique using focused ion beam (FIB) to generate cross-sectional transmission electron microscopy (XTEM) samples of chemical vapor deposition (CVD) of Tungsten-plug (W-plug) and Tungsten Silicides (WSix) was studied. Using the combination method including two axes tilting[l], gas enhanced focused ion beam milling[2] and sacrificial metal coating on both sides of electron transmission membrane[3], it was possible to prepare a sample with minimal thickness (less than 1000 A) to get high spatial resolution in TEM observation. Based on this novel thinning technique, some applications such as XTEM observation of W-plug with different aspect ratio (I - 6), and the grain structure of CVD W-plug and CVD WSix were done. Also the problems and artifacts of XTEM sample preparation of high Z-factor material such as CVD W-plug and CVD WSix were given and the ways to avoid or minimize them were suggested.


2012 ◽  
Vol 490-495 ◽  
pp. 3211-3214 ◽  
Author(s):  
Lei Shan Chen ◽  
Cun Jing Wang

Synthesis reactions were carried out by chemical vapor deposition using iron catalyst supported on aluminum hydroxide at 400 °C and 420 °C, in the presence of argon as carrier gas and acetylene as carbon source. The aluminum hydroxide support was separated by refluxing the samples in 40% NaOH solution for 2 h and 36% HCl solution for 24 h, respectively. The samples were characterized by field-emission scanning electron microscopy, energy dispersive spectroscopy, high-resolution transmission electron microscopy and X-ray diffraction. The results show that carbon nanotubes were the main products at 420 °C, while large scale high purity nano onion-like fullerenes encapsulating Fe3C, with almost uniform sizes ranging from 10-50 nm, were obtained at the low temperature of 400 °C.


1989 ◽  
Vol 148 ◽  
Author(s):  
Zuzanna Liliental-Weber ◽  
Raymond P. Mariella

ABSTRACTTransmission electron microscopy of GaAs grown on Si for metal-semiconductor-metal photodetectors is presented in this paper. Two kinds of samples are compared: GaAs grown on a 15 Å Si epilayer grown on GaAs, and GaAs grown at low temperature (300°C) on Si substrates. It is shown that the GaAs epitaxial layer grown on thin Si layer has reverse polarity to the substrate (antiphase relation). Higher defect density is observed for GaAs grown on Si substrate. This higher defect density correlates with an increased device speed, but with reduced sensitivity.


1978 ◽  
Vol 31 (1) ◽  
pp. 369-392
Author(s):  
J.A. Trotter ◽  
B.A. Foerder ◽  
J.M. Keller

The 3-dimensional structure of the fibrous cytoskeleton of 3T3 cells was examined by scanning electron microscopy of cells extracted with the non-ionic detergent Triton X-100. Detergent-extracted cells consist of the nucleus and an extensive system of fibres, the largest of which correspond to stress fibres visible by phase-contrast microscopy. The system of fibres, which is coterminous with the borders of the native cell, remains firmly adherent to the substratum. The major fibres branch into smaller fibrils which appear to end by ravelling out into fine filaments that constitute a matted network in a plane very close to that of the substratum. In the nuclear region all the major fibres pass over the top of the nucleus, where they may also branch into a system of fine fibrils. Thin-section transmission electron microscopy in conjunction with heavy meromyosin treatment of extracted cells shows the fibres to be composed of native F-actin. Intermediate filaments are also present, and are prominent in the matted network, together with actin filaments. The major proteins of the residue are identified by SDS-polyacrylamide gel electrophoresis as actin, a 56000 Dalton peptide, and histones. Also present are myosin heavy chain, peptides of 225,000 and 250,000, and minor bands at 60,000 and 94,000 Daltons. The non-ionic detergent extracts 70% of the cellular protein, including 50% of the actin and 75% of the myosin. The Triton-insoluble fraction of 3T3 cells appears to constitute, in addition to the nucleus, a stable cytoskeletal system, composed largely of contractile proteins and 10-nm filaments, which functions in maintenance of cell shape, in substratum adhesion, and in positioning the nucleus within the cell.


2021 ◽  
Vol 21 (4) ◽  
pp. 2538-2544
Author(s):  
Nguyen Minh Hieu ◽  
Nguyen Hoang Hai ◽  
Mai Anh Tuan

Tin oxides nanowires were prepared by chemical vapor deposition using shadow mask. X-ray diffraction indicated that the products were tetragonal having crystalline structure with lattice constants a = 0.474 nm and c = 0.318 nm. The high-resolution transmission electron microscopy revealed that inter planar spacing is 0.25 nm. The results chemical mapping in scanning transmission electron microscopy so that the two elements of Oxygen and Tin are distributed very homogeneously in nanowires and exhibit no apparent elements separation. A bottom-up mechanism for SnO2 growth process has been proposed to explain the morphology of SnO2 nanowires.


Sign in / Sign up

Export Citation Format

Share Document