The Temperature and Strain Rate Dependence of the Flow Stress in MoSi2 Single Crystals

1993 ◽  
Vol 322 ◽  
Author(s):  
S.A. Maloy ◽  
T.E. Mitchell ◽  
John J. Petrovic ◽  
A.H. Heuer ◽  
J.J. Lewandowski

AbstractThe temperature dependence of the flow stress and deformation mechanisms of single crystal MoSi2 have been determined for compression along three different orientations, [001], [021] and [771], at two different strain rates, 1 × 10−5/s and 1 × 10−4/s, and at temperatures between 900 and 1600°C. The flow stress along [021] is slightly higher than that along [771] while both orientations gave a much lower flow stress than that along [001]. Along [021], slip occurs on the {110} 1/2<111> slip system between 1000 and 1200°C, while at 1300-1400°C, slip occurs on the {013}<100> slip system. Along [771], deformation occurs by the [001]<100> slip system while cross-slip onto {013} and [011] planes is observed at 1000-1300°C except that slip occurs on the {013{1/2<331> slip system at 1000-1100°C for faster strain rates. Along [001], slip occurs on the {013}1/2<331> system at 900-1100°C while slip is observed on the {011} 1/2<111> system at 1300-1600°C. Strain rate jump tests from 1×10−5/s to 5x10−5/s at 1 100°C revealed a stress exponent of 7 along [771] and 20 along [021], while a rate jump test from lx10−5/s to 2x 10−5/s along [001] at 1400°C gave a stress exponent of 3.9.

1994 ◽  
Vol 364 ◽  
Author(s):  
Stuart A Maloy ◽  
George T Gray

AbstractSingle crystal NiAl and Ni-49.75Al-0.25Fe have been deformed along <110> at temperatures of 77, 298 and 773K and strain rates of 0.001/s, 0.1/s and 2000/s. The flow stress of <110> NiAl is rate and temperature sensitive. A significant decrease in the work hardening rate is observed after deformation at 77K and a strain rate of 2000/s. Coarse {110} slip traces are observed after deformation at a strain rate of 2000/s at 77K, while no slip traces were observed after deformation under all other conditions. TEM observations reveal distinct {110} slip bands after deformation at 77K and a strain rate of 2000/s.


1990 ◽  
Vol 213 ◽  
Author(s):  
D.F. Lahrman ◽  
R.D. Field ◽  
R. Darolia

ABSTRACTIn this study, the strain rate sensitivity of single crystal NiAl has been investigated by performing tensile tests as a function of temperature and two strain rates. Three crystallographic orientations, [100], [110], and [111] were studied. The tensile test results investigated include yield strength, work hardening rate and plastic strain to failure. The data are discussed in terms of deformation mechanisms in NiAl.


2000 ◽  
Vol 646 ◽  
Author(s):  
I. Baker ◽  
D. Wu ◽  
E. P. George

ABSTRACTThe effects of the environment on the room temperature mechanical behavior of Fe-43Al single crystals have been studied. In both single slip and duplex slip crystals, fracture strains greater than 40% were obtained in specimens tested in oxygen, whereas elongations of ∼10% and ∼20% were obtained in air and vacuum, respectively. By comparison, similar elongations were obtained in boron-doped single-slip-oriented single crystals in both air and vacuum, but more ductility was obtained in air at slow strain rate. Fractography showed that testing in different environments produced marked differences in the fracture surfaces. Alternate loading of tensile specimens in air and under vacuum was performed at slow strain rates and showed changes in the flow stress between the two environments. The results are discussed in terms of the effects of moisture-produced hydrogen on the flow and fracture of FeAl.


1983 ◽  
Vol 50 (4b) ◽  
pp. 941-952 ◽  
Author(s):  
R. J. Clifton

Recent advances in the understanding of the dynamic plastic response of crystalline solids are discussed. At the level of individual dislocations progress is being made on measurements of dislocation mobility at high stress levels and on elastodynamics solutions for transient dislocation motions. More progress is required on the understanding of changes in mobile dislocation density during dynamic plastic deformation. Widespread use of the Kolsky (or split-Hopkinson) bar has resulted in a reasonably clear picture of the dependence of flow stress on plastic strain rate for polycrystalline metals deformed at strain rates up to 103s−1. Influences of strain-rate history, temperature, and pressure require further investigation. At strain rates of approximately 103s−1’ to 105s−1 there is increasing evidence of a marked increase in flow stress with increasing strain rate. Pressure-shear plate impact experiments appear to be attractive for studying plastic response in this high strain-rate regime. Differences, if any, between stress-path effects at quasi-static strain rates and at strain rates of 103s−1 and higher remain poorly understood. Larger-than-predicted precursor decay observed in plate impact experiments on single crystals remains unresolved and of continuing fundamental interest; however, the importance of precursor decay measurements in determining dynamic plastic response appears to be diminishing because surface effects and limitations on the resolution of wave-front profiles represent serious constraints on the inferences that can be drawn from precursor decay measurements. Modeling of dynamic plastic response of polycrystals in terms of the response of slip systems is in an early stage of development. Kinematics of finite deformation by crystalline slip and consistent averaging techniques for modeling polycrystalline response are understood reasonably well. Increased emphasis on the understanding of the dynamic plastic response of single crystals and on the influence of microstructure appear desirable for sustained progress. Physically based models of wide applicability are required.


1996 ◽  
Vol 460 ◽  
Author(s):  
M. Demura ◽  
T. Hirano

ABSTRACTThe strain-rate dependence of flow stress in single crystals of binary, stoichiometric Ni3Al was studied in the temperature region of the yield stress anomaly. Below 400 K, the steady-state flow stress was found to be independent of strain rate, though it changed temporarily when the strain rate was changed. The strain-rate insensitivity can be explained by assuming that the flow stress is controlled by the multiplication/immobilization of mobile dislocations.


Author(s):  
G. A. Stone ◽  
G. Thomas

A single crystal stressed in the [3]𝛄 direction at 185°K was transformed to 5% 𝛂 martensite and 2% Ɛ martensite by volume. The austenite slip system of maximum shear stress is the (11)𝛄 [01)𝛄. Fig. 1 shows a two surface study using the electron and optical microscopes. The a martensite is confined between £martensite plates with the (0001)Ɛ ∥ (11)𝛄. The size of the acicular martensite crystals is controlled by the spacing of the £ martensite plates. These £ martensite plates are seen in Fig. 1A as dark vertical bands. The axes of the acicular crystals lie in the (11)𝛄 plane. The £ martensite habit plane is defined as the plane perpendicular to the (11)𝛄 containing the vector defining the crystal axis.


Author(s):  
Adewale Olasumboye ◽  
Gbadebo Owolabi ◽  
Olufemi Koya ◽  
Horace Whitworth ◽  
Nadir Yilmaz

Abstract This study investigates the dynamic response of AA2519 aluminum alloy in T6 temper condition during plastic deformation at high strain rates. The aim was to determine how the T6 temper condition affects the flow stress response, strength properties and microstructural morphologies of the alloy when impacted under compression at high strain rates. The specimens (with aspect ratio, L/D = 0.8) of the as-cast alloy used were received in the T8 temper condition and further heat-treated to the T6 temper condition based on the standard ASTM temper designation procedures. Split-Hopkinson pressure bar experiment was used to generate true stress-strain data for the alloy in the range of 1000–3500 /s strain rates while high-speed cameras were used to monitor the test compliance with strain-rate constancy measures. The microstructures of the as received and deformed specimens were assessed and compared for possible disparities in their initial microstructures and post-deformation changes, respectively, using optical microscopy. Results showed no clear evidence of strain-rate dependency in the dynamic yield strength behavior of T6-temper designated alloy while exhibiting a negative trend in its flow stress response. On the contrary, AA2519-T8 showed marginal but positive response in both yield strength and flow behavior for the range of strain rates tested. Post-deformation photomicrographs show clear disparities in the alloys’ initial microstructures in terms of the second-phase particle size differences, population density and, distribution; and in the morphological changes which occurred in the microstructures of the different materials during large plastic deformation. AA2519-T6 showed a higher susceptibility to adiabatic shear localization than AA2519-T8, with deformed and bifurcating transformed band occurring at 3000 /s followed by failure at 3500 /s.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yong Peng ◽  
Xuanzhen Chen ◽  
Shan Peng ◽  
Chao Chen ◽  
Jiahao Li ◽  
...  

In order to study the dynamic and fracture behavior of 6005 aluminum alloy at different strain rates and stress states, various tests (tensile tests at different strain rates and tensile shearing tests at five stress states) are conducted by Mechanical Testing and Simulation (MTS) and split-Hopkinson tension bar (SHTB). Numerical simulations based on the finite element method (FEM) are performed with ABAQUS/Standard to obtain the actual stress triaxialities and equivalent plastic strain to fracture. The results of tensile tests for 6005 Al show obvious rate dependence on strain rates. The results obtained from simulations indicate the feature of nonmonotonicity between the strain to fracture and stress triaxiality. The equivalent plastic strain reduces to a minimum value and then increases in the stress triaxiality range from 0.04 to 0.30. A simplified Johnson-Cook (JC) constitutive model is proposed to depict the relationship between the flow stress and strain rate. What is more, the strain-rate factor is modified using a quadratic polynomial regression model, in which it is considered to vary with the strain and strain rates. A fracture criterion is also proposed in a low stress triaxiality range from 0.04 to 0.369. Error analysis for the modified JC model indicates that the model exhibits higher accuracy than the original one in predicting the flow stress at different strain rates. The fractography analysis indicates that the material has a typical ductile fracture mechanism including the shear fracture under pure shear and the dimple fracture under uniaxial tensile.


The mechanical properties of pure iron single crystals and of polycrystalline specimens of a zone-refined iron have been measured in compression over the temperature and strain rate ranges 2.2 to 293 °K and 7 x 10 -7 to 7 x 10 -3 s -1 respectively. Various yield stress parameters were determined as functions of both temperature and strain rate, and the reversible changes in flow stress produced by isothermal changes of strain rate or by changes of temperature at constant strain rate were also measured as functions of temperature, strain and strain rate. Both the temperature variation of the flow stress and the strain rate sensitivity of the flow stress were generally identical for the single crystals ( ca. 0.005/M carbon) and the polycrystalline specimens ( ca. 9/M carbon). At low temperatures, the temperature dependence of the yield stress was smaller than that of the flow stress at high strains, probably because of the effects of mechanical twinning, but once again the behaviour of single and polycrystalline specimens was very similar. Below 10 °K, both the flow stress and the extrapolated yield stress were independent of temperature. The results show that macroscopic yielding and flow at low temperatures are both governed by the same deformation mechanism, which is not very impurity sensitive, even in the very low carbon range covered by the experiments. The flow stress near 0 °K is ca. 5.8 x 10 -3 u where [i is the shear modulus. On the basis of a model for thermally activated flow, the activation volume at low temperatures (high stresses) is found to be ca. 5 b 3 . The exponent in the empirical power law for the dislocation velocity against stress relation is ca. 3 near room temperature, but becomes quite large at low temperatures. The results indicate that macroscopic deformation at low temperatures is governed by some kind of lattice frictional stress (Peierls-Nabarro force) acting on dislocations.


Sign in / Sign up

Export Citation Format

Share Document