Photochemical Modification of Fluorocarbon Resin Surface to Adhere with Epoxy Resin

1993 ◽  
Vol 334 ◽  
Author(s):  
M. Okoshi ◽  
T. Miyokawa ◽  
H. Kashiura ◽  
M. Murahara

AbstractAn epoxy-compatible layer was produced in the near-surface region of a fluorocarbon resin by irradiating with an ArF excimer laser in a gaseous B(CH3)3 or a B(OH)3 water solution atmosphere. The pure photochemical reaction was employed in the modification process, the defluorination of the surface was performed with boron atoms which were photo-dissociated from B(CH3)3 or B(OH)3. The CH3 or OH radicals, also photo-dissociated, replaced the fluorine atoms of the surface. As a result, chemical bonding of the surface with the epoxy was performed. The adhesive strength was evaluated by the shearing tensile test, and the epoxy break value of 130 kgf/cm2 was sucessfully achieved.

1991 ◽  
Vol 236 ◽  
Author(s):  
M. Okoshi ◽  
K. Toyoda ◽  
M. Murahara

AbstractA silicon carbide-like layer was produced in the near-surface region of teflon by irradiating with an ArF excimer laser in a SiH4 and B(CH3)3 mixed gas atmosphere. The pure photochemical reaction was employed in the modification process, and the defluorination of the surface was performed with boron atoms which were photodissociated from B(CH3)3. The CH3 radicals, also photodissociated, induced the dehydrogenation of SiH4 gas; which followed the production of SiHx radicals. The SiHx radicals and CH3 radicals which could not have induced the dehydrogenation of SiH4 were substituted for fluorine atoms of the surface. As a result, the surface was photomodified into silicon carbide. Chemical composition of the photomodified surface was inspected by the XPS and the ATR-FT-IR spectra measurement, and the bonding of the Si-CH3 radicals which traded off the reduction of the fluorine atoms was comfirmed. The Si/C composition ratio of the photomodified surface was 0.7.


1992 ◽  
Vol 279 ◽  
Author(s):  
M. Okoshi ◽  
H. Kashiura ◽  
T. Miyokawa ◽  
K. Toyoda ◽  
M. Murahara

ABSTRACTOH radicals were photochemically substituted for fluorine atoms in the teflon surface by using an ArF excimer laser light and an Al(OH)3 solution. This method is simple and can be performed in air atmosphere. In the process, the teflon film was placed on the Al(OH)3 which were dissolved in NaOH water solution; the ArF excimer laser light was irradiated the sample surface and the solution. By irradiating the laser, the surface was defluorinated by the aluminium atoms photodissociated from the Al(OH)3 solution, and the dangling bonds which were formed in the defluorinated surface combined with the OH radicals also photodissociated. The hydrophilic property of the photomodified surface was evaluated by the measurement of the contact angle with water. The defluorination and the OH radicals substitution were inspected by the XPS analysis and the ATR-FTIR measurement.


1995 ◽  
Vol 397 ◽  
Author(s):  
T. Okamoto ◽  
K. Hatao ◽  
T. Shimizu ◽  
M. Aoike ◽  
M. Murahara

ABSTRACTPolyimide sheet surface was photochemically modified to be hydrophilic property with Xe2* excimer lamp ( λ =172nm) irradiation and pure water solution. The solution was sandwiched between the surface and fused silica glass. With the excimer lamp irradiation, the solution and the surface were excited; the surface was dehydrogenated by the hydrogen atoms which were photodissociated from pure water and replaced the photodissociated OH radicals. The hydrophilic property of the modified surface was evaluated by measuring the contact angle with water. The replacement of the OH radicals were confirmed by FTIR. The modified surface was bonded to stainless steel with an epoxy resin for evaluation of the adhesive strength by the shearing tensile test. As a result, the adhesion was increased to 1.4 times that of the non-irradiated sample.


Author(s):  
R.C. Dickenson ◽  
K.R. Lawless

In thermal oxidation studies, the structure of the oxide-metal interface and the near-surface region is of great importance. A technique has been developed for constructing cross-sectional samples of oxidized aluminum alloys, which reveal these regions. The specimen preparation procedure is as follows: An ultra-sonic drill is used to cut a 3mm diameter disc from a 1.0mm thick sheet of the material. The disc is mounted on a brass block with low-melting wax, and a 1.0mm hole is drilled in the disc using a #60 drill bit. The drill is positioned so that the edge of the hole is tangent to the center of the disc (Fig. 1) . The disc is removed from the mount and cleaned with acetone to remove any traces of wax. To remove the cold-worked layer from the surface of the hole, the disc is placed in a standard sample holder for a Tenupol electropolisher so that the hole is in the center of the area to be polished.


Author(s):  
John D. Rubio

The degradation of steam generator tubing at nuclear power plants has become an important problem for the electric utilities generating nuclear power. The material used for the tubing, Inconel 600, has been found to be succeptible to intergranular attack (IGA). IGA is the selective dissolution of material along its grain boundaries. The author believes that the sensitivity of Inconel 600 to IGA can be minimized by homogenizing the near-surface region using ion implantation. The collisions between the implanted ions and the atoms in the grain boundary region would displace the atoms and thus effectively smear the grain boundary.To determine the validity of this hypothesis, an Inconel 600 sample was implanted with 100kV N2+ ions to a dose of 1x1016 ions/cm2 and electrolytically etched in a 5% Nital solution at 5V for 20 seconds. The etched sample was then examined using a JEOL JSM25S scanning electron microscope.


Author(s):  
S. Cao ◽  
A. J. Pedraza ◽  
L. F. Allard

Excimer-laser irradiation strongly modifies the near-surface region of aluminum nitride (AIN) substrates. The surface acquires a distinctive metallic appearance and the electrical resistivity of the near-surface region drastically decreases after laser irradiation. These results indicate that Al forms at the surface as a result of the decomposition of the Al (which has been confirmed by XPS). A computer model that incorporates two opposing phenomena, decomposition of the AIN that leaves a metallic Al film on the surface, and thermal evaporation of the Al, demonstrated that saturation of film thickness and, hence, of electrical resistance is reached when the rate of Al evaporation equals the rate of AIN decomposition. In an electroless copper bath, Cu is only deposited in laser-irradiated areas. This laser effect has been designated laser activation for electroless deposition. Laser activation eliminates the need of seeding for nucleating the initial layer of electroless Cu. Thus, AIN metallization can be achieved by laser patterning followed by electroless deposition.


1992 ◽  
Vol 105-110 ◽  
pp. 1383-1386 ◽  
Author(s):  
Hugh E. Evans ◽  
D.L. Smith ◽  
P.C. Rice-Evans ◽  
G.A. Gledhill ◽  
A.M. Moore

Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 693
Author(s):  
Christian Ludt ◽  
Elena Ovchinnikova ◽  
Anton Kulikov ◽  
Dmitri Novikov ◽  
Sibylle Gemming ◽  
...  

This work focuses on the validation of a possible connection of the known Ruddlesden-Popper (RP) phases and the novel concept of the migration-induced field-stabilized polar (MFP) phase. To study this subject, model structures of RP phases in bulk strontium titanate are analyzed by means of density functional theory (DFT). The obtained geometries are compared to experimental MFP data. Good agreement can be found concerning atomic displacements in the pm range and lattice strain inferred by the RP phases. Looking at the energy point of view, the defect structures are on the convex hull of the Gibb’s free energy. Although the dynamics to form the discussed defect models are not addressed in detail, the interplay and stability of the described defect model will add to the possible structure scenarios within the near-surface region of strontium titanate. As a result, it can be suggested that RP phases generally favor the MFP formation.


2009 ◽  
Vol 1203 ◽  
Author(s):  
Erik M. Muller ◽  
John Smedley ◽  
Balaji Raghothamachar ◽  
Mengjia Gaowei ◽  
Jeffrey W. Keister ◽  
...  

AbstractX-ray topography data are compared with photodiode responsivity maps to identify potential candidates for electron trapping in high purity, single crystal diamond. X-ray topography data reveal the defects that exist in the diamond material, which are dominated by non-electrically active linear dislocations. However, many diamonds also contain defects configurations (groups of threading dislocations originating from a secondary phase region or inclusion) in the bulk of the wafer which map well to regions of photoconductive gain, indicating that these inclusions are a source of electron trapping which affect the performance of diamond X-ray detectors. It was determined that photoconductive gain is only possible with the combination of an injecting contact and charge trapping in the near surface region. Typical photoconductive gain regions are 0.2 mm across; away from these near-surface inclusions the device yields the expected diode responsivity.


1997 ◽  
Vol 469 ◽  
Author(s):  
V. C. Venezia ◽  
T. E. Haynes ◽  
A. Agarwal ◽  
H. -J. Gossmann ◽  
D. J. Eaglesham

ABSTRACTThe diffusion of Sb and B markers has been studied in vacancy supersaturations produced by MeV Si implantation in float zone (FZ) silicon and bonded etch-back silicon-on-insulator (BESOI) substrates. MeV Si implantation produces a vacancy supersaturated near-surface region and an interstitial-rich region at the projected ion range. Transient enhanced diffusion (TED) of Sb in the near surface layer was observed as a result of a 2 MeV Si+, 1×1016/cm2, implant. A 4× larger TED of Sb was observed in BESOI than in FZ silicon, demonstrating that the vacancy supersaturation persists longer in BESOI than in FZ. B markers in samples with MeV Si implant showed a factor of 10× smaller diffusion relative to markers without the MeV Si+ implant. This data demonstrates that a 2 MeV Si+ implant injects vacancies into the near surface region.


Sign in / Sign up

Export Citation Format

Share Document