Epitaxial Growth of Ba1−xSrxTiO3 Thin Films on YBa2Cu3O7−x Electrode by PE-MOCVD

1993 ◽  
Vol 335 ◽  
Author(s):  
C.S. Chern ◽  
S. Liang ◽  
Z.Q. Shi ◽  
S. Yoon ◽  
A. Safari ◽  
...  

AbstractPlasma-enhanced metalorganic chemical vapor deposition (PE-MOCVD) has been successfully employed for the deposition of (100) oriented barium strontium titanate (BST) thin films on a variety of substrate and electrode materials. The incorporation of O2 plasma, which was used as oxidation reactant, has helped to reduce the required temperature for deposition of high-quality STO and BST thin films. This low temperature processing may make it possible to integrate BST on Si and GaAs. BST films with low leakage current densities of about 10−7 A/cm2 at 2-volt (about 105 V/cm) operation were obtained from PE-MOCVD processing. Moreover, the BST results of capacitance-temperature (C-T) measurements show that most of the PE-MOCVD BST films have Curie temperatures of about 30–35°C and a peak dielectric constant of 600–800 at zero bias voltage, The sharp transition in the C-T data indicates that the BST films may have a high induced pyroelectric coefficient at room temperature, which is highly desirable for uncooled IR imaging arrays. The x-ray diffraction and Rutherford backscattering spectrometry results show that the BST film composition reproducibility was well controlled at around Ba0.75Sr0.25TiO3 with a 4% variation. Device quality BST thin films with the thickness of 1000–2000 Å were produced. These results indicate that PE-MOCVD has high potential to be further developed and promoted as a production deposition technique providing high permittivity dielectric thin films for microelectronics and IR sensor industries.

1999 ◽  
Vol 603 ◽  
Author(s):  
P.K. Baumann ◽  
D.Y. Kaufman ◽  
S.K. Streiffer ◽  
J. IM ◽  
O. Auciello ◽  
...  

AbstractWe have investigated the structural and electrical characteristics of (BaxSr1−x)Ti1+yO3+z (BST) thin films. The BST thin films were deposited at 650°C on platinized silicon with good thickness and composition uniformity using a large area, vertical liquid-delivery metalorganic chemical vapor deposition (MOCVD) system. The (Ba+Sr)/Ti ratio of the BST films was varied from 0.96 to 1.05 at a fixed Ba/Sr ratio of 70/30, as determined using x-ray fluorescence spectroscopy (XRF) and Rutherford backscattering spectrometry (RBS). Patterned Pt top electrodes were deposited onto the BST films at 350°C through a shadow mask using electron beam evaporation. Annealing the entire capacitor structure in air at 700°C after deposition of top electrodes resulted in a substantial reduction of the dielectric loss. Useful dielectric tunability as high as 2.3:1 was measured.


1997 ◽  
Vol 493 ◽  
Author(s):  
Deok-Sin Kil ◽  
Byung-Il Lee ◽  
Seung-Ki Joo

ABSTRACTBST thin films have been fabricated by RF magnetron sputtering onto Ir layer as a bottom electrode. When the substrate temperature was maintained at 600 °C during deposition, BST films deposited at that temperature showed very small oxide equivalent thickness of 0.36nm as well as very low leakage current density of about 10−8A/cm2at 1.5V. But as substrate temperature was increased to 700 °C in order to obtain high dielectric constant, oxide equivalent thickness exhibited very low value of about 0.3nm, however, leakage current density drastically increased to 10−4/cm2. BST thin films were fabricated by two step process, which consists of bottom layer deposited at high substrate temperature of 700 °C and top layer deposited at low substrate temperature. In the case of BST thin films which are composed of 20nm thick bottom layer deposited at 700 °C and 30nm thick top layer deposited at 500 °C, we obtained very small oxide equivalent thickness of 0.31nm and low leakage current density of 4 × 10−8A/cm2. at 1.5V.


1999 ◽  
Vol 603 ◽  
Author(s):  
G. T. Stauf ◽  
P. S. Chen ◽  
W. Paw ◽  
J. F. Roeder ◽  
T. Ayguavives ◽  
...  

AbstractThere has been significant interest recently in use of BaSrTiO3 (BST) thin films for integrated capacitors; these devices have benefits for high frequency operations, particularly when high levels of charge or energy storage are required. We discuss the electrical properties of BST thin films grown by metalorganic chemical vapor deposition (MOCVD) which make them suitable for these applications, as well as the impact of processing conditions such as growth temperature on specific film properties. We have also examined addition of Zr in amounts ranging up to 20% to the BST films. X-Ray diffraction indicates that the Zr is incorporated into the BST lattice. Voltage withstanding capability, leakage and dielectric constant of the thin films have been measured as functions of deposition temperature and Zr content. Addition of Zr to BST films increases breakdown voltages by as much as a factor of two, to approximately 2 MV/cm, raising their energy storage density values to levels approaching 30 J/cc. Charge storage densities of above 60 fF/µm2were also obtained.


1998 ◽  
Vol 508 ◽  
Author(s):  
D. M. Reber ◽  
S. J. Fonash

AbstractSilicon dioxide thin films have been deposited at temperatures from 40°C to 250°C by plasma enhanced chemical vapor deposition (PECVD) using tetramethylsilane (TMS) as the silicon containing precursor. The properties of the PECVD TMS oxides (PETMS-Oxs) were analyzed with Fourier Transform Infrared (FTIR) transmission spectroscopy, BOE and P-etch rates and both current-voltage (I-V) and capacitance-voltage (C-V) electrical characterization. At both 130 °C and 250 °C, deposition conditions were identified which formed high quality as-deposited oxide films. Under the best conditions, unannealed Al/PETMS-Ox/c-Si capacitor structures displayed flat band voltages of Vfb = -2.5 V and breakdown fields (Vbd) in excess of 8 MV/cm. These PETMS-Ox films also show low leakage current densities <10-9 A/cm2 which can be maintained up to fields in excess of 4.5 MV/cm. The PETMS oxide electrical quality and process simplicity combine to make a very attractive oxide deposition technology for low temperature, large area applications.


1999 ◽  
Vol 14 (11) ◽  
pp. 4395-4401 ◽  
Author(s):  
Seung-Hyun Kim ◽  
D. J. Kim ◽  
K. M. Lee ◽  
M. Park ◽  
A. I. Kingon ◽  
...  

Ferroelectric SrBi2Ta2O9 (SBT) thin films on Pt/ZrO2/SiO2/Si were successfully prepared by using an alkanolamine-modified chemical solution deposition method. It was observed that alkanolamine provided stability to the SBT solution by retarding the hydrolysis and condensation rates. The crystallinity and the microstructure of the SBT thin films improved with increasing annealing temperature and were strongly correlated with the ferroelectric properties of the SBT thin films. The films annealed at 800 °C exhibited low leakage current density, low voltage saturation, high remanent polarization, and good fatigue characteristics at least up to 1010 switching cycles, indicating favorable behavior for memory applications.


2009 ◽  
Vol 1153 ◽  
Author(s):  
Yuri Vygranenko ◽  
Ehsanollah Fathi ◽  
Andrei Sazonov ◽  
Manuela Vieira ◽  
Gregory Heiler ◽  
...  

AbstractWe report on structural, electronic, and optical properties of boron-doped, hydrogenated nanocrystalline silicon (nc-Si:H) thin films deposited by plasma-enhanced chemical vapor deposition (PECVD) at a substrate temperature of 150°C. Film properties were studied as a function of trimethylboron-to-silane ratio and film thickness. The film thickness was varied in the range from 14 to 100 nm. The conductivity of 60 nm thick films reached a peak value of 0.07 S/cm at a doping ratio of 1%. As a result of amorphization of the film structure, which was indicated by Raman spectra measurements, any further increase in doping reduced conductivity. We also observed an abrupt increase in conductivity with increasing film thickness ascribed to a percolation cluster composed of silicon nanocrystallites. The absorption loss of 25% at a wavelength of 400 nm was measured for the films with optimized conductivity deposited on glass and glass/ZnO:Al substrates. A low-leakage, blue-enhanced p-i-n photodiode with an nc-Si p-layer was also fabricated and characterized.


2006 ◽  
Vol 933 ◽  
Author(s):  
Sushil Kumar Singh ◽  
Hiroshi Ishiwara

AbstractMn-substituted BiFeO3 (BFO) thin films were formed by chemical solutions deposition on Pt/Ti/SiO2/Si(100) structures. Effects of the Mn-substitution on the structure and ferroelectricity of BFO films were examined. We found that the lattice structure of the film is sensitive to the Mn-substitution and the secondary phase is appears in 50% Mn-substituted BFO films. The leakage current were increased with the Mn-substitution. However, the 5% Mn-substituted BFO film shows low leakage current than undoped BFO films in a high electric field than 0.5 MV/cm. Due to the low leakage current in Mn-doped 3, 5 and 7% BFO films, the saturated P-E hysteresis loops with remanent polarization around 100 μC/cm2 were obtained at RT.


2005 ◽  
Vol 902 ◽  
Author(s):  
Sandra Dussan ◽  
Maharaj Tomar ◽  
Ricardo Melgarejo ◽  
Ram Katiyar

AbstractBismuth titanate (Bi4Ti3O12) is an electroceramic within the Aurivillius phase material with week ferroelectric memory. However, the partial substitution of Bi ion by a trivalent rare earth resulted in improved ferroelectric polarization. We synthesized Bi4-xSmxTi3O12 by a solution chemistry route and thin films were deposited by spin coating on Pt (Pt/TiO2/SiO2/Si) substrate. X-ray diffraction studies of the films showed a stoichiometric solid solution for the composition x ≤0.85. The films showed fatigue free ferroelectric polarization (Pr = 19.8 µC/cm2) for the composition x = 0.70. The films showed low leakage current at room temperature, showing the possibility of lead free ferroelectric devices.


1990 ◽  
Vol 203 ◽  
Author(s):  
P. Li ◽  
B. Gittleman ◽  
T.-M. Lu

ABSTRACTHigh dielectric constant thin films for packaging applications were studied. Compared with polycrystalline or epitaxial ferroelectric thin films amorphous ferroelectric films are a promising alternative because of their ease of processing and low leakage current. Reactive Partially Ionized Beam deposition (RPIB) offers a new approach to deposit high dielectric constant films at a low substrate temperature. As an example, the growth of amorphous BaTiOs thin films using RPIB deposition is described. The films were characterized in terms of dielectric constant and leakage current. The annealing effects on the film properties are also discussed.


2012 ◽  
Vol 557-559 ◽  
pp. 1933-1936
Author(s):  
Ning Yan ◽  
Sheng Hong Yang ◽  
Yue Li Zhang

Pure BiFeO3(BFO) and Bi0.9Nd0.1Fe0.925Mn0.075O3(BNFM) thin films were deposited on Pt(111)/Ti/SiO2/Si substrate by sol-gel method. X-ray diffraction analysis showed that all the films were single perovskite structure and a phase transition appeared in Nd–Mn codoped BiFeO3 thin films. Electrical measurements indicated that the ferroelectric properties of BFO thin films were significantly improved by Nd and Mn codoping. BNFM films exhibit a low leakage current and a good P-E hysteresis loop. The remanent polarization (Pr) value of 74μC/cm2has been obtained in BNFM films, while the coercive field (Ec) is 184kV/cm.


Sign in / Sign up

Export Citation Format

Share Document