Band-Offsets Between Group-III-Nitrides

1994 ◽  
Vol 339 ◽  
Author(s):  
E. A. Albanesi ◽  
W. R. L. Lambrecht ◽  
B. Segall

ABSTRACTThe valence-band offset at the zincblende AIN/GaN. AIN/InN and InN/GaN (110) interfaces are calculated self-consistently by means of the linear muffin-tin orbital method using up to 5+5 layer supercells. All interfaces have a type I-offset. Assuming interface orientation and polytype effects on the valence-band maximum to be reasonably small, a type I offset can also be expected for wurtzite interfaces. Our results are in very good agreement with experimental values for AIN/GaN, the only nitride interface for which they are available.Subject index terms: band offsets, interfaces, hetero junctions, superlattices. III-nitrides.

1996 ◽  
Vol 449 ◽  
Author(s):  
J. A. Majewski ◽  
M. Städele ◽  
P. Vogl

ABSTRACTWe present first-principles calculations of structural and electronic properties of heterova-lent SiC/GaN, SiC/AIN, and isovalent AIN/GaN heterostructures that are grown pseudo-morphically on (001) or (110) SiC substrates. For the polar interfaces, we have investigated reconstructed stoichiometric interfaces consisting of one and two mixed layers with lateral c(2 × 2), 2 × 1, 1 × 2, and 2 × 2 arrangements. The preferred bonding configurations of the reconstructed interfaces are found to be Si-N and Ga-C. With respect to vacuum, the valence band maximum is found to be highest in SiC and lowest in A1N. In these systems, the valence band offsets deviate substantially from the transitivity rule and depend sensitively on the microscopic details of the interface geometry. The SiC/AIN and AIN/GaN heterostructures are predicted to be of type I, whereas SiC/GaN heterostructure can be of type I or II.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Ya-Wei Huan ◽  
Ke Xu ◽  
Wen-Jun Liu ◽  
Hao Zhang ◽  
Dmitriy Anatolyevich Golosov ◽  
...  

AbstractHybrid heterojunctions based on two-dimensional (2D) and conventional three-dimensional (3D) materials provide a promising way toward nanoelectronic devices with engineered features. In this work, we investigated the band alignment of a mixed-dimensional heterojunction composed of transferred MoS2 on β-Ga2O3($$ 2- $$2-01) with and without nitridation. The conduction and valence band offsets for unnitrided 2D-MoS2/3D-β-Ga2O3 heterojunction were determined to be respectively 0.43 ± 0.1 and 2.87 ± 0.1 eV. For the nitrided heterojunction, the conduction and valence band offsets were deduced to 0.68 ± 0.1 and 2.62 ± 0.1 eV, respectively. The modified band alignment could result from the dipole formed by charge transfer across the heterojunction interface. The effect of nitridation on the band alignments between group III oxides and transition metal dichalcogenides will supply feasible technical routes for designing their heterojunction-based electronic and optoelectronic devices.


1997 ◽  
Vol 482 ◽  
Author(s):  
J. A. Majewski ◽  
M. Städele

AbstractWe present a first-principles study of heteroepitaxial interfaces between GaN and both cubic as well as wurtzite AlN substrates oriented along main cubic or hexagonal directions and of stacking fault interfaces between cubic and wurtzite GaN. Our calculations show that all studied heterostructures are of type I. Valence band offsets for GaN/AlN are nearly independent of the substrate orientation and of the order of 0.8 eV. The valence and conduction band offsets for a stacking fault interface are predicted to be 40 meV and 175 meV, respectively.


1997 ◽  
Vol 482 ◽  
Author(s):  
R.A. Beach ◽  
E.C. Piquette ◽  
R.W. Grant ◽  
T.C. McGill

AbstractAlthough GaN has been extensively studied for applications in both light emitting and high power devices, the AlN/GaN valence band offset remains an area of contention. Values quoted in the literature range from 0.8eV (Martin)[1] to 1.36eV (Waldrop)[2]. This paper details an investigation of the AIN/AlxGa1-xN band offset as a function of alloy composition. We find an AlN/AlxGa1-xN valence band offset that is nearly linear with Al content and an end point offset for AlN/GaN of 1.36 ± 0.1 eV. Samples were grown using radio frequency plasma assisted molecular beam epitaxy and characterized with x-ray photoelectron spectroscopy(XPS). Core-level and valence-band XPS data for AIN (0001) and AlxGa1-xN (0001) samples were analyzed to determine core-level to valence band maximum (VBM) energy differences. In addition, oxygen contamination effects were tracked in an effort to improve accuracy. Energy separations of core levels were obtained from AlN/AlxGa1-xN(0001) heterojunctions. From this and the core-level to valence band maximum separations of the bulk materials, valence band offsets were calculated.


1995 ◽  
Vol 395 ◽  
Author(s):  
Kwiseon Kim ◽  
Walter R. L. Lambrecht ◽  
B. Segall

ABSTRACTThe elastic constants of the Group-III nitrides, c-BN, AlN and GaN were calculated from first-principles using the full-potential linear muffin-tin orbital method and local density approximation. The relation between the elatic constants in zincblende and wurtzite is studied by means of a tensor coordinate transformation approach. The latter combined with a correction for the internal displacement of the rotated tetrahedra is found to provide good results for the Ch11Ch12 and Ch44 but not for Ch13 and Ch33. These two require explicit calculations involving distortions along the c-axis. The calculations also provide information on the transverse optical phonons. By deriving Keating model parameters we show that BN is much stiffer against bond-angle distortions than the other nitrides.


2005 ◽  
Vol 884 ◽  
Author(s):  
J. W. Ager ◽  
W. Walukiewicz ◽  
K. M. Yu ◽  
W. Shan ◽  
J. Denlinger ◽  
...  

AbstractTwo ternary alloys based on III-nitride semiconductor alloys are explored as potential components of photoelectrochemical cells (PECs) for the direct generation of hydrogen using solar energy. For In1-xGaxN, it will be shown using prior measurements of band offsets that spontaneous water splitting can occur for x up to 0.2 and potentially higher. Flat band potential and photocurrent measurements from an n-type epilayer with x = 0.37 will be presented. This initial data appears to indicate that the flat band potential lies just below the H+/H2 from pH 0 – 14. In the case of GaAsxN1-x we will demonstrate that the replacement of a few percent of As in N sublattice drives the bandgap down from the GaN value (3.4 eV) into a range that is attractive for PEC cells [1]. This band gap reduction is explained by the valence band anticrossing that pushes the valence band maximum up initially by 0.5 eV. From the point of view of a PEC cell, this reduces the gap (desirable for efficiency) without compromising the desired H+/H2 overpotential.


2021 ◽  
Vol 2 (3) ◽  
pp. 274-283
Author(s):  
Masaya Ichimura

The band alignment of Mg(OH)2-based heterostructures is investigated based on first-principles calculation. (111)-MgO/(0001)-Mg(OH)2 and (0001)-wurtzite ZnO/(0001)-Mg(OH)2 heterostructures are considered. The O 2s level energy is obtained for each O atom in the heterostructure supercell, and the band edge energies are evaluated following the procedure of the core-level spectroscopy. The calculation is based on the generalized gradient approximation with the on-site Coulomb interaction parameter U considered for Zn. For MgO/Mg(OH)2, the band alignment is of type II, and the valence band edge of MgO is higher by 1.6 eV than that of Mg(OH)2. For ZnO/Mg(OH)2, the band alignment is of type I, and the valence band edge of ZnO is higher by 0.5 eV than that of Mg(OH)2. Assuming the transitivity rule, it is expected that Mg(OH)2 can be used for certain types of heterostructure solar cells and dye-sensitized solar cells to improve the performance.


1991 ◽  
Vol 240 ◽  
Author(s):  
Emil S. Koteies

ABSTRACTWe have developed a novel experimental technique for accurately determining band offsets in semiconductor quantum wells (QW). It is based on the fact that the ground state heavy- hole (HH) band energy is more sensitive to the depth of the valence band well than the light-hole (LH) band energy. Further, it is well known that as a function of the well width, Lz, the energy difference between the LH and HH excitons in a lattice matched, unstrained QW system experiences a maximum. Calculations show that the position, and more importantly, the magnitude of this maximum is a sensitive function of the valence band offset, Qy, which determines the depth of the valence band well. By fitting experimentally measured LH-HH splittings as a function of Lz, an accurate determination of band offsets can be derived. We further reduce the experimental uncertainty by plotting LH-HH as a function of HH energy (which is a function of Lz ) rather than Lz itself, since then all of the relevant parameters can be precisely determined from absorption spectroscopy alone. Using this technique, we have derived the conduction band offsets for several material systems and, where a consensus has developed, have obtained values in good agreement with other determinations.


Sign in / Sign up

Export Citation Format

Share Document