Damage and Lattice Strain in Ion-Irradiated AlxGai-xAs

1994 ◽  
Vol 354 ◽  
Author(s):  
P. Partyka ◽  
R.S. Averback ◽  
D.V. Forbes ◽  
J.J. Coleman ◽  
P. Ehrhart ◽  
...  

AbstractRadiation-induced damage and strain in AlxGai-xAs (x=5 to 1) were investigated by measurements of the lattice parameter using x-ray diffraction. Irradiations employed MeV C, Ar and Au ion beams with a substrate temperature of 80 K. For samples with high Al content, the out-of-plane lattice parameter increased with fluence at low doses, saturated, and then decreased to nearly its original value. The in-plane lattice parameter did not change, throughout. These results were independent of the irradiation particle when scaled by damage energy. For the Al.5Ga.5As samples, however, the out-of-plane lattice parameter increased monotonically with dose to large strains until the layer amorpnized. Selected samples were examined by high resolution and conventional transmission electron microscopy (TEM). Channeling Rutherford backscattering spectrometry (CRBS) was also employed to monitor the buildup of damage in many samples. Recovery of the lattice parameter during subsequent thermal annealing was also investigated.

2017 ◽  
Vol 898 ◽  
pp. 1669-1674 ◽  
Author(s):  
Bin Shao ◽  
Bing Bing Li ◽  
Chun Hong Li ◽  
Yi Long Ma ◽  
Qiang Zheng ◽  
...  

The microstructure and the chemistry distribution of AlNiCo 9 samples were characterized by the X-ray diffraction, magnetic force microscope, field emission scanning electron microscopy and transmission electron microscope. An interface of a high Al content was formed near the FeCo-rich phases with a size of about 30 nm. S elements mainly combined with Ti to form titanium sulfide bars with the length between 70-150 μm, while S elements was not confirmed in the nanostructured FeCo-rich phase and AlNi-rich phase. Si and Nb preferably existed in the NiAl-rich phase, and a higher content Nb near the Cu precipitate boundary was observed. Moreover, the magnetic domain structure of AlNiCo 9 was also studied.


2000 ◽  
Vol 5 (S1) ◽  
pp. 412-424
Author(s):  
Jung Han ◽  
Jeffrey J. Figiel ◽  
Gary A. Petersen ◽  
Samuel M. Myers ◽  
Mary H. Crawford ◽  
...  

We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant- PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GaInN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.


1999 ◽  
Vol 14 (5) ◽  
pp. 2012-2022 ◽  
Author(s):  
Andreas Seifert ◽  
Laurent Sagalowicz ◽  
Paul Muralt ◽  
Nava Setter

Pb1−xCaxTiO3 thin films with x = 0−0.3 for pyroelectric applications were deposited on platinized silicon wafers by chemical solution processing. Ca-substitution for Pb in PbTiO3 results in a reduced c/a ratio of the unit cell, which, in turn, leads to better pyroelectric properties. Control of nucleation and growth during rapid thermal annealing to 650 °C allowed the formation of either highly porous or dense (111) oriented films. The inclusion of pores creates a matrix-void composite with the low permittivity desired for pyroelectric applications, resulting in a high figure of merit. The growth mechanisms for the microstructural evolution of both dense and porous films were analyzed by x-ray diffraction, transmission electron microscopy, scanning electron microscopy, and Rutherford backscattering spectrometry and allowed establishment of microstructure/property relationships.


1999 ◽  
Vol 595 ◽  
Author(s):  
Jung Han ◽  
Jeffrey J. Figiel ◽  
Gary A. Petersen ◽  
Samuel M. Myers ◽  
Mary H. Crawford ◽  
...  

AbstractWe report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant- PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GaInN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.


1999 ◽  
Vol 597 ◽  
Author(s):  
M. Siegert ◽  
Judit G. Lisoni ◽  
C. H. Lei ◽  
A. Eckau ◽  
W. Zander ◽  
...  

AbstractIn the process of developing thin film electro-optical waveguides we investigated the influence of different substrates on the optical and structural properties of epitaxial BaTiO3 thin films. These films are grown by on-axis pulsed laser deposition (PLD) on MgO(100), MgAl2O4(100), SrTiO3(100) and MgO buffered A12O3(1102) substrates. The waveguide losses and the refractive indices were measured with a prism coupling setup. The optical data are correlated to the results of Rutherford backscattering spectrometry/ion channeling (RBS/C). X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). BaTiO3 films on MgO(100) substrates show planar waveguide losses of 3 dB/cm and ridge waveguide losses of 5 dB/cm at a wavelength of 633 nm.


2000 ◽  
Vol 619 ◽  
Author(s):  
T. Steffl ◽  
B. Rellinghaus ◽  
H. Mühlbauer ◽  
CH. Müller ◽  
H. Herper ◽  
...  

ABSTRACTWe have prepared (Fe(001)/Pd(001)) multilayers onto Pd-buffered sapphire substrates. Structural investigations utilizing HRTEM, RHEED and XRD show that the films grow epitaxially for up to 32 bilayers. Whereas the Fe lattice is found to assume the lateral (in-plane) lattice spacing of the underlying Pd layers, the out-of-plane lattice parameter along the [001] growth direction of the film is successively reduced with increasing Fe layer thickness. This outof-plane lattice relaxation even survives a subsequent growth of Pd onto the Fe. Thus, by varying the Fe layer thickness we have control of the atomic volume of Fe. Magnetization measurements reveal that the magnetic moment of Fe is as high as 2.7 µB per atom when the atomic volume is larger than Vat(Fe) ≥ 11.7 Å3 and is reduced to 2.2 µB per atom for Vat(Fe) ≤ 11.1 Å3.


1992 ◽  
Vol 280 ◽  
Author(s):  
Z. Ma ◽  
L. H. Allen

ABSTRACTSolid phase epitaxial (SPE) growth of SixGei1-x alloys on Si (100) was achieved by thermal annealing a-Ge/Au bilayers deposited on single crystal Si substrate in the temperature range of 280°C to 310°C. Growth dynamics was investigated using X-ray diffraction, Rutherford backscattering spectrometry, and cross-sectional transmission electron microscopy. Upon annealing, Ge atoms migrate along the grain boundaries of polycrystalline Au and the epitaxial growth initiates at localized triple points between two Au grains and Si substrate, simultaneously incorporating a small amount of Si dissolved in Au. The Au is gradually displaced into the top Ge layer. Individual single crystal SixGei1-x islands then grow laterally as well as vertically. Finally, the islands coalesce to form a uniform layer of epitaxial SixGe1-x alloy on the Si substrate. The amount of Si incorporated in the final epitaxial film was found to be dependent upon the annealing temperature.


2005 ◽  
Vol 475-479 ◽  
pp. 2453-2456
Author(s):  
Y. Zhang ◽  
Y. Tsushio ◽  
Hirotoshi Enoki ◽  
Etsuo Akiba

Novel Mg-Co binary alloys with BCC (body-centered cubic) structure have been successfully synthesized by means of mechanical alloying technique. The formation of BCC structure was confirmed by X-ray diffraction and transmission electron microscopy. Mg-Co alloys were found in the range of Co concentration between 37 and 80 atomic %. All the Mg-Co alloys synthesized absorbed hydrogen below 373K. The maximum hydrogen capacity of these alloys reaches 2.7 mass %. However, desorption of hydrogen at 373 K has not been observed yet. Mg- Co-X (X = B and Ni) ternary alloys with BCC structure have also been synthesized. The lattice parameter of both alloys is lower than that of Mg-Co binary alloys, meanwhile the maximum hydrogen content of both alloys also decreased.


2008 ◽  
Vol 23 (11) ◽  
pp. 2880-2885 ◽  
Author(s):  
Herbert Willmann ◽  
Paul H. Mayrhofer ◽  
Lars Hultman ◽  
Christian Mitterer

Microstructure and hardness evolution of arc-evaporated single-phase cubic Al0.56Cr0.44N and Al0.68Cr0.32N coatings have been investigated after thermal treatment in Ar atmosphere. Based on a combination of differential scanning calorimetry and x-ray diffraction studies, we can conclude that Al0.56Cr0.44N undergoes only small structural changes without any decomposition for annealing temperatures Ta ⩽ 900 °C. Consequently, the hardness decreases only marginally from the as-deposited value of 30.0 ± 1.1 GPa to 29.4 ± 0.9 GPa with Ta increasing to 900 °C, respectively. The film with higher Al content (Al0.68Cr0.32N) exhibits formation of hexagonal (h) AlN at Ta ⩾ 700 °C, which occurs preferably at grain boundaries as identified by analytical transmission electron microscopy. Hence, the hardness increases from the as-deposited value of 30.1 ± 1.3 GPa to 31.6 ± 1.4 GPa with Ta = 725 °C. At higher temperatures, where the size and volume fraction of the h-AlN phase increases, the hardness decreases to 27.5 ± 1.0 GPa with Ta = 900 °C.


2015 ◽  
Vol 821-823 ◽  
pp. 213-216
Author(s):  
S.M. Ryndya ◽  
N.I. Kargin ◽  
A.S. Gusev ◽  
E.P. Pavlova

Silicon carbide thin films were obtained on Si (100) and (111) substrates by means of vacuum laser ablation of α-SiC ceramic target. The influence of substrate temperature on composition, structure and surface morphology of experimental samples was examined using Rutherford backscattering spectrometry (RBS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), conventional and high-resolution transmission electron microscopy (TEM/HRTEM), atomic force microscopy (AFM), selected area electron diffraction (SAED) and X-ray diffraction (XRD) methods.


Sign in / Sign up

Export Citation Format

Share Document