Microstructure and Distribution of Low Content Elements in AlNiCo 9

2017 ◽  
Vol 898 ◽  
pp. 1669-1674 ◽  
Author(s):  
Bin Shao ◽  
Bing Bing Li ◽  
Chun Hong Li ◽  
Yi Long Ma ◽  
Qiang Zheng ◽  
...  

The microstructure and the chemistry distribution of AlNiCo 9 samples were characterized by the X-ray diffraction, magnetic force microscope, field emission scanning electron microscopy and transmission electron microscope. An interface of a high Al content was formed near the FeCo-rich phases with a size of about 30 nm. S elements mainly combined with Ti to form titanium sulfide bars with the length between 70-150 μm, while S elements was not confirmed in the nanostructured FeCo-rich phase and AlNi-rich phase. Si and Nb preferably existed in the NiAl-rich phase, and a higher content Nb near the Cu precipitate boundary was observed. Moreover, the magnetic domain structure of AlNiCo 9 was also studied.

2008 ◽  
Vol 23 (11) ◽  
pp. 2880-2885 ◽  
Author(s):  
Herbert Willmann ◽  
Paul H. Mayrhofer ◽  
Lars Hultman ◽  
Christian Mitterer

Microstructure and hardness evolution of arc-evaporated single-phase cubic Al0.56Cr0.44N and Al0.68Cr0.32N coatings have been investigated after thermal treatment in Ar atmosphere. Based on a combination of differential scanning calorimetry and x-ray diffraction studies, we can conclude that Al0.56Cr0.44N undergoes only small structural changes without any decomposition for annealing temperatures Ta ⩽ 900 °C. Consequently, the hardness decreases only marginally from the as-deposited value of 30.0 ± 1.1 GPa to 29.4 ± 0.9 GPa with Ta increasing to 900 °C, respectively. The film with higher Al content (Al0.68Cr0.32N) exhibits formation of hexagonal (h) AlN at Ta ⩾ 700 °C, which occurs preferably at grain boundaries as identified by analytical transmission electron microscopy. Hence, the hardness increases from the as-deposited value of 30.1 ± 1.3 GPa to 31.6 ± 1.4 GPa with Ta = 725 °C. At higher temperatures, where the size and volume fraction of the h-AlN phase increases, the hardness decreases to 27.5 ± 1.0 GPa with Ta = 900 °C.


2011 ◽  
Vol 172-174 ◽  
pp. 851-856
Author(s):  
Tomasz Borowski ◽  
Jerzy Jeleńkowski ◽  
Tadeusz Wierzchoń

The paper analyzes the magnetic properties and stability of austenite, athermal martensite, and deformation martensite that form in Ni27Ti2AlMoNb steel subjected to glow discharge assisted nitriding, and also of nitrogen austenite (S phase with various lattice constants) which occurs when the nitriding process is conducted below the temperature As. The analysis of these structural components and their morphology was performed using a magnetic force microscope (MFM), whereas the phase composition of the nitrided layers produced on this steel was determined by X-ray diffraction.


1994 ◽  
Vol 354 ◽  
Author(s):  
P. Partyka ◽  
R.S. Averback ◽  
D.V. Forbes ◽  
J.J. Coleman ◽  
P. Ehrhart ◽  
...  

AbstractRadiation-induced damage and strain in AlxGai-xAs (x=5 to 1) were investigated by measurements of the lattice parameter using x-ray diffraction. Irradiations employed MeV C, Ar and Au ion beams with a substrate temperature of 80 K. For samples with high Al content, the out-of-plane lattice parameter increased with fluence at low doses, saturated, and then decreased to nearly its original value. The in-plane lattice parameter did not change, throughout. These results were independent of the irradiation particle when scaled by damage energy. For the Al.5Ga.5As samples, however, the out-of-plane lattice parameter increased monotonically with dose to large strains until the layer amorpnized. Selected samples were examined by high resolution and conventional transmission electron microscopy (TEM). Channeling Rutherford backscattering spectrometry (CRBS) was also employed to monitor the buildup of damage in many samples. Recovery of the lattice parameter during subsequent thermal annealing was also investigated.


1993 ◽  
Vol 300 ◽  
Author(s):  
J. S. Chen ◽  
E. Kolawa ◽  
R. P. Ruiz ◽  
M-A. Nicolet

ABSTRACTA Pt/Ge/Au contact of the structure: <n-GaAs>/Pt(17nm)/Ge(25nm)/Au(43nm), overlaid with a Ta-Si-N barrier layer and a Au metallization layer has a contact resistivity, ρc, of 3.7×10−6 Ωcm2 after annealing at 450°C for 15 min. After aging at 450°C for 60 h, ρc slightly degrades to 5.5×10−6 Ωcm2 while the surface keeps smooth. When alloyed at 550°C for 15 min, ρc is 1.8×10−6 Ωcm2 and stays about the same value after annealing at 550°C for 1 h. Without the Ta-Si-N barrier and the Au overlayer, the Pt/Ge/Au contact alone is also ohmic after annealing at 450°C for 15 min but with a ρc of ∼10−5 Ωcm2 while the surface morphology deteriorates significantly after aging at 450°C for 20 h.The thermal reactions of this Pt/Ge/Au contact on GaAs, with or without a Ta-Si-N barrier layer, are investigated by backscattering spectrometry, x-ray diffraction, and transmission electron microscopy in conjunction with energy dispersive analyses of x-rays. For all samples, the main reaction products after annealing at 450°C for 15 min are Au7Ga2, and PtGe:As, a PtGe phase that also contains arsenic. The product phases are randomly distributed within a laterally uniform reacted layer when the Pt/Ge/Au contact is covered by a Ta-Si-N layer. Without the Ta-Si-N barrier layer, a small arsenic loss and a Ga-rich phase (probably Gaoxides) on the contact surface are observed after annealing at 450°C. In this case, the surface and contact-semiconductor interface are more faceted than with a Ta-Si-N barrier layer.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1739
Author(s):  
Paulius Malinovskis ◽  
Stefan Fritze ◽  
Justinas Palisaitis ◽  
Erik Lewin ◽  
Jörg Patscheider ◽  
...  

Several ternary phases are known in the Mo-Fe-B system. Previous ab initio calculations have predicted that they should exhibit a tempting mix of mechanical and magnetic properties. In this study, we have deposited Mo-Fe-B films with a Fe-content varying from 0–37 at.% using non-reactive DC (direct current) magnetron sputtering. The phase composition, microstructure, and mechanical properties were investigated using X-ray diffraction, scanning transmission electron microscopy, and nanoindentation measurements. Films deposited at 300 °C and with >7 at.% Fe are nanocomposites consisting of two amorphous phases: a metal-rich phase and a metal-deficient phase. Hardness and elastic modulus were reduced with increasing Fe-content from ~29 to ~19 GPa and ~526 to ~353 GPa, respectively. These values result in H3/E2 ratios of 0.089–0.052 GPa, thereby indicating brittle behaviour of the films. Also, no indication of crystalline ternary phases was observed at temperatures up to 600 °C, suggesting that higher temperatures are required for such films to form.


2020 ◽  
Vol 34 (23) ◽  
pp. 2050245
Author(s):  
Liang-Ling Wang ◽  
Nian-Qiao Liu ◽  
Xiao-Jun Cui

The crystal structure and magnetic properties of [Formula: see text] grown by optical floating zone method have been studied. The chemical composition and element ratio in the crystal were analyzed by energy dispersive X-ray spectroscopy (EDS). The results of X-ray diffraction and Raman spectra of the crystal reveal that it has a spinel structure with high crystallinity and purity. The magnetic domain period observed by using magnetic force microscopy (MFM) shows that the crystal has a stable multi-domain structure. According to the superconducting quantum interference device (SQUID) results, the magnetization increases nonlinearly with increasing magnetic field strength and approaches magnetic saturation, proving it is a paramagnetic medium. The magnetization decreases rapidly below Curie temperature and approaches stability with increasing temperature.


1996 ◽  
Vol 449 ◽  
Author(s):  
M. Shin ◽  
A. Y. Polyakov ◽  
W. Qian ◽  
M. Skowronski ◽  
D. W. Greve ◽  
...  

ABSTRACTLayers of AIBN were grown on sapphire by organometallic vapor phase epitaxy (OMVPE) at 1050°C using triethylboron (TEB), trimethylaluminum (TMA) and ammonia as precursors. Boron is readily incorporated into the layers and its concentration in the solid phase can be made fairly high, up to at least 40%. However, single phase AIxB1–xN films can only be grown for compositions not exceeding x=0.01. For higher B concentrations a second B-rich phase is formed. This phase is shown to be most probably wurtzite BN based on the results of transmission electron microscopy and x-ray diffraction. The growth of this phase occurs within the framework of wurtzite AIN islands providing the sites for lateral growth of wurtzite BN. This leads to formation of columnar structure of AIN and BN crystallites oriented in the basal plane and existing side by side. This is one of the first observation of purely thermal growth of sp3 bonded BN.


2010 ◽  
Vol 159 ◽  
pp. 87-90
Author(s):  
M. Milanova ◽  
Roumen Kakanakov ◽  
G. Koleva ◽  
P. Vitanov ◽  
V. Bakardjieva ◽  
...  

GaSb based III-V heterostuctures are attractive for optoelectronic devices such as midin- frared lasers, detectors, and thermophotovoltaics (TPVs). In this paper the growth and characterization of GaInAsSb and GaAlAsSb quaternary layers, lat-tice-matched to GaSb substrate, are reported, with a particular focus on these alloys for TPV devi-ces. High-quality with a mirror-like surface morphology epilayers Ga1-x InxAsy Sb1-y with In content x in the range 0.1-0.22 and Ga1-xAlxAsySb1-y layers with Al content up to 0.3 in the solid are grown by Liquid-Phase Epitaxy (LPE) from In- and Ga-rich melt, respectively. The compositions of the quaternary compounds are determined by X-ray microanalysis. The crystalline quality of GaInAsSb/ GaSb and GaAlAsSb/GaSb heterostuctures is studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements.


2008 ◽  
Vol 72 (3) ◽  
pp. 817-825 ◽  
Author(s):  
G. Cressey ◽  
B. A. Cressey ◽  
F. J. Wicks

AbstractLizardite-1T crystals from Gew-graze at the Lizard, Cornwall, of an apparent composition (Mg2.94Fe0.03Al0.03)(Si1.97Al0.03)05(OH)4, have been observed to contain 2–5% of thin interstratifications of clinochlore when investigated by analytical transmission electron microscopy (TEM). The clinochlore is usually only a few unit layers thick but has an extensive lateral dimension parallel to the lizardite layers. Analytical TEM confirms the existence of very low-Al lizardite with a planar structure interstratified with occasional thin units of clinochlore containing substantial Al. Compositionally, such clinochlore (invisible by X-ray diffraction) interstratified throughout the lizardite crystals, could account for most of the Al present. We suggest that an occasional influx of Al causes the nucleation and growth of clinochlore at the expense of lizardite. The possibility of clinochlore contributing to the measured Al content in lizardite samples highlights the need for future investigations of Al-bearing serpentines to include careful examination and interpretation using imaging and analysis by TEM.It has crept into serpentine discussions that lizardite cannot form without the coupled substitution of Al to relieve the misfit between the sheets of octahedra and tetrahedra. The lizardite at Gew-graze is almost Al-free, forms well-crystallized planar crystals and demonstrates that Al is not an essential element for lizardite crystallization.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document