Stucture of 1/2 Dislocations In γ-Tial by High Resolution Tem and Embedded Atom Method Modelling

1994 ◽  
Vol 364 ◽  
Author(s):  
J. P. Simmons ◽  
M. J. Mills ◽  
S. I. Rao

AbstractHigh Resolution TEM (HRTEM) observations of a dislocation in γ-TiAl are compared directly with atomistic calculations of dislocation structures performed with atomistic potentials in order to obtain an estimate of the Complex Stacking Fault Energy (γcsf). A value of between 470 and 620 mJ/M2 was obtained. HRTEM observations are presented of a Ti-52AI sample, containing a dislocation with Burgers vector 1/2<110> and 60° line orientation. This image is matched against images simulated from the outputs of Embedded Atom Method (EAM) simulations, using potentials that were fit to bulk γ-TiAl properties. Two atomistic simulation methods were employed in order to give the range of values for γcsf. In the first of these methods, three EAM potentials were used to simulate the stress-free core structure. These were fit so as to produce three different values of γcsf, all other properties being roughly the same as the literature values for γ-TiAI. All of these potentials produced cores that were more extended than the experimental observation. Thus a value of 470 mJ/M2, being the highest value of γcsf obtainable for the EAM potentials, is reported as a low limit estimate of γcsf for γ-TiAl. An upper limit estimate of the value of γcsf was obtained by applying an external ‘Escaig’ stress that forced the Shockley partials to further constrict, simulating the effect of an increase in γcsf, The preliminary value calculated from this procedure was 620 mJ/M2.

2003 ◽  
Vol 775 ◽  
Author(s):  
Byeongchan Lee ◽  
Kyeongjae Cho

AbstractWe investigate the surface kinetics of Pt using the extended embedded-atom method, an extension of the embedded-atom method with additional degrees of freedom to include the nonbulk data from lower-coordinated systems as well as the bulk properties. The surface energies of the clean Pt (111) and Pt (100) surfaces are found to be 0.13 eV and 0.147 eV respectively, in excellent agreement with experiment. The Pt on Pt (111) adatom diffusion barrier is found to be 0.38 eV and predicted to be strongly strain-dependent, indicating that, in the compressive domain, adatoms are unstable and the diffusion barrier is lower; the nucleation occurs in the tensile domain. In addition, the dissociation barrier from the dimer configuration is found to be 0.82 eV. Therefore, we expect that atoms, once coalesced, are unlikely to dissociate into single adatoms. This essentially tells that by changing the applied strain, we can control the patterning of nanostructures on the metal surface.


2021 ◽  
Vol 11 (15) ◽  
pp. 6801
Author(s):  
Polina Viktorovna Polyakova ◽  
Julia Alexandrovna Pukhacheva ◽  
Stepan Aleksandrovich Shcherbinin ◽  
Julia Aidarovna Baimova ◽  
Radik Rafikovich Mulyukov

The aluminum–magnesium (Al–Mg) composite materials possess a large potential value in practical application due to their excellent properties. Molecular dynamics with the embedded atom method potentials is applied to study Al–Mg interface bonding during deformation-temperature treatment. The study of fabrication techniques to obtain composites with improved mechanical properties, and dynamics and kinetics of atom mixture are of high importance. The loading scheme used in the present work is the simplification of the scenario, experimentally observed previously to obtain Al–Cu and Al–Nb composites. It is shown that shear strain has a crucial role in the mixture process. The results indicated that the symmetrical atomic movement occurred in the Mg–Al interface during deformation. Tensile tests showed that fracture occurred in the Mg part of the final composite sample, which means that the interlayer region where the mixing of Mg, and Al atoms observed is much stronger than the pure Mg part.


1998 ◽  
Vol 4 (S2) ◽  
pp. 762-763
Author(s):  
V. Vitek

Since interfaces and grain boundaries affect critically many properties of materials, their atomic structure has been investigated very extensively using computer modeling. Most of these calculations have been made using semi-empirical central-force descriptions of atomic interactions, recently primarily the embedded-atom type many-body potentials. Owing to the approximate nature of such schemes, a connection with experimental observations that can validate the calculations is essential. The high resolution electron microscopy (HREM) is such experimental technique and it has, indeed, been frequently combined with calculations of interfacial structure and chemistry. In fact such a link is not only important for verification of the results of computer modeling but also crucial for meaningful interpretation of HREM observations. Hence, coupling the atomistic modeling with HREM is a synergistic procedure. It not only leads to better understanding of interfacial structures but may contribute significantly to the validation and assessment of limits of the schemes used for the description of atomic interactions.


1986 ◽  
Vol 83 ◽  
Author(s):  
Brian W. Dodson ◽  
Paul A. Taylor

ABSTRACTUnderstanding of the growth, stability, and structural properties of coherently strained metal overlayers has achieved considerable importance because of the recent discovery of unique interfacial electronic states and catalytic properties of such systems. The structural stability of coherently strained metal films grown on a substrate composed of a different and lattice-mismatched metal is determined via atomistic calculations. An equilibrium energy balance criterion is used, which is evaluated with a Monte Carlo annealing optimization procedure in which the structural energy of the bimetallic system is obtained using the embedded atom method. The stability of coherently strained (100) bimetallic structures chosen from combinations of the fcc metals Ag, Au, Cu, Ni, Pd, and Pt has been studied. The predicted critical thicknesses agree remarkably well with experimental results, but disagree quantitatively with the continuum models.


2014 ◽  
Vol 1015 ◽  
pp. 37-41
Author(s):  
Yan Ni Wen ◽  
Xiao Bin Fang ◽  
Xiao Fei Jia

The self-diffusion in very thin Cu (001) film that formed by 2~11 atomic layers have been studied by using modified analytic embedded atom method (MAEAM) and a molecular dynamic (MD) simulation. The vacancy formation is the most easily in of Cu (001) thin film formed by any layers. The vacancy formation energy 0.5054eV in of the Cu (001) thin film formed by layers is the highest in all the values in the ones that formed by layers. The vacancy in and 3 is easily migrated to layer, and the vacancy in is easily migrated in intra-layer, and the vacancy in is easily migrated to when the corresponding atomic layer is existed. The vacancy formation and diffusion will not be affected by the atomic layer when the Cu (001) thin film is formed by more than ten layers ().


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ravi Kiran Siripurapu ◽  
Barbara Szpunar ◽  
Jerzy A. Szpunar

Molecular dynamics approach is used to simulate hydrogen (H) diffusion in zirconium. Zirconium alloys are used in fuel channels of many nuclear reactors. Previously developed embedded atom method (EAM) and modified embedded atom method (MEAM) are tested and a good agreement with experimental data for lattice parameters, cohesive energy, and mechanical properties is obtained. Both EAM and MEAM are used to calculate hydrogen diffusion in zirconium. At higher temperatures and in the presence of hydrogen, MEAM calculation predicts an unstable zirconium structure and low diffusion coefficients. Mean square displacement (MSD) of hydrogen in bulk zirconium is calculated at a temperature range of 500–1200 K with diffusion coefficient at 500 K equals 1.92 * 10−7 cm2/sec and at 1200 K has a value 1.47 * 10−4 cm2/sec. Activation energy of hydrogen diffusion calculated using Arrhenius plot was found to be 11.3 kcal/mol which is in agreement with published experimental results. Hydrogen diffusion is the highest along basal planes of hexagonal close packed zirconium.


1994 ◽  
Vol 362 ◽  
Author(s):  
S. I. Rao ◽  
P. M. Hazzledine ◽  
D. M. Dimiduk

AbstractExperimental results show that a nanolayered composite structure made of two kinds of metals strengthens dramatically as the layer thickness is reduced. In epitaxial systems, this strengthening has been attributed classically, to the modulus and lattice parameter mismatches between adjacent layers. The modulus mismatch introduces a force between a dislocation and its image in the interface. The lattice parameter mismatch generates stresses and mismatch dislocations which interact with mobile dislocations. In addition to these two interactions, there is the difficulty of operating a Frank-Read source in any very thin layer. However, the calculations suffer from the drawback that elasticity theory is being used at such short range from the dislocations that it is not strictly valid. In this paper the issues in strengthening of multilayer systems are defined within a simple analytical model. Additionally, a parametric approach using the atomistic embedded atom method (EAM), is developed to study, dislocation-interface interactions in metallic multilayers. Preliminary results of the atomistic calculations verify that Koehler strengthening is significant especially when the lamellae are very thin. For thicker lamellae the lattice parameter mismatch effects, which have been modelled within continuum theory, contribute increasingly to the strength. In Cu-Ni, the peak in the yield stress occurs when single dislocations must overcome both barriers. The yield stress drops in thicker lamellae as pile ups of increasing length form in the lamellae, finally conforming to the Hall-Petch equation.


Sign in / Sign up

Export Citation Format

Share Document