The Mechanical Properties of Fe-36.5Al and its Cr or ti Containing Alloys at Elevated Temperature

1994 ◽  
Vol 364 ◽  
Author(s):  
Dingqiang Li ◽  
Yi Liu ◽  
Aidang Shan ◽  
Dongliang Lin

AbstractThe mechanical properties of B2 structural FeAl alloys, prepared by hot rolling, at elevated temperatures have been measured by tensile tests. The alloys of Fe-36.5at.%A1, Fe-36.5at.%A1-5at.%Cr and Fe-36.5at.%Al-2at.%Ti were taken for tensile tests at a temperature range from room temperature to 1000°C. The fracture surfaces of these alloys were observed by SEM. The results showed that elongations of these alloys increased with increasing temperature when the testing temperatures were above 600°C. All the maximum elongations of these alloys appeared at 1000°C and those of Fe-36.5A1, Fe-36.5Al-5Cr, and Fe-36.5Al-2Ti alloys were 120%, 183% and 208% respectively. Fracture surfaces showed that failure of these alloys was by a combination of intergranular fracture and transgranular cleavage below 700°C. but showed a ductile fracture above 700°C. The ductility and strength of ternary alloys were higher than that of binary FeAl alloy at elevated temperatures, especially at high temperature. The <111> dislocations and helices have been observed in Fe-36.5A1 alloy by TEM. The large elongation of FeAl alloy at high temperature resulted from <111> dislocations slipping and <111> helices climbing.

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1330
Author(s):  
Muhammad Farzik Ijaz ◽  
Mahmoud S. Soliman ◽  
Ahmed S. Alasmari ◽  
Adel T. Abbas ◽  
Faraz Hussain Hashmi

Unfolding the structure–property linkages between the mechanical performance and microstructural characteristics could be an attractive pathway to develop new single- and polycrystalline Al-based alloys to achieve ambitious high strength and fuel economy goals. A lot of polycrystalline as-cast Al-Cu-Mg-Ag alloy systems fabricated by conventional casting techniques have been reported to date. However, no one has reported a comparison of mechanical and microstructural properties that simultaneously incorporates the effects of both alloy chemistry and mechanical testing environments for the as-cast Al-Cu-Mg-Ag alloy systems. This preliminary prospective paper presents the examined experimental results of two alloys (denoted Alloy 1 and Alloy 2), with constant Cu content of ~3 wt.%, Cu/Mg ratios of 12.60 and 6.30, and a constant Ag of 0.65 wt.%, and correlates the synergistic comparison of mechanical properties at room and elevated temperatures. According to experimental results, the effect of the precipitation state and the mechanical properties showed strong dependence on the composition and testing environments for peak-aged, heat-treated specimens. In the room-temperature mechanical testing scenario, the higher Cu/Mg ratio alloy with Mg content of 0.23 wt.% (Alloy 1) possessed higher ultimate tensile strength when compared to the low Cu/Mg ratio with Mg content of 0.47 wt.% (Alloy 2). From phase constitution analysis, it is inferred that the increase in strength for Alloy 1 under room-temperature tensile testing is mainly ascribable to the small grain size and fine and uniform distribution of θ precipitates, which provided a barrier to slip by deaccelerating the dislocation movement in the room-temperature environment. Meanwhile, Alloy 2 showed significantly less degradation of mechanical strength under high-temperature tensile testing. Indeed, in most cases, low Cu/Mg ratios had a strong influence on the copious precipitation of thermally stable omega phase, which is known to be a major strengthening phase at elevated temperatures in the Al-Cu-Mg-Ag alloying system. Consequently, it is rationally suggested that in the high-temperature testing scenario, the improvement in mechanical and/or thermal stability in the case of the Alloy 2 specimen was mainly due to its compositional design.


2012 ◽  
Vol 602-604 ◽  
pp. 627-630 ◽  
Author(s):  
Kyu Sik Kim ◽  
Kee Ahn Lee ◽  
Jong Ha Kim ◽  
Si Woo Park ◽  
Kyu Sang Cho

Inconel 713C alloy was tried to manufacture by using MIM(Metal Injection Molding) process. The high-temperature mechanical properties of MIMed Inconel 713C were also investigated. Processing defects such as pores and binders could be observed near the surface. Tensile tests were conducted from room temperature to 900°C. The result of tensile tests showed that this alloy had similar or somewhat higher strengths (YS: 734 MPa, UTS: 968 MPa, elongation: 7.16 % at room temperature) from RT to 700°C than those of conventional Inconel 713C alloys. Above 800°C, however, ultimate tensile strength decreased rapidly with increasing temperature (lower than casted Inconel 713C). Based on the observation of fractography, initial crack was found to have started near the surface defects and propagated rapidly. The superior mechanical properties of MIMed Inconel 713C could be obtained by optimizing the MIM process parameters.


2007 ◽  
Vol 560 ◽  
pp. 29-34 ◽  
Author(s):  
Emmanuel Gutiérrez C. ◽  
Armando Salinas-Rodríguez ◽  
Enrique Nava-Vázquez

The effects of heating rate and annealing temperature on the microstructure and mechanical properties of cold rolled Al-Si, low C non-oriented electrical steels are investigated using SEM metallography and uniaxial tensile tests. The experimental results show that short term annealing at temperatures up to 850 °C result in microstructures consisting of recrystallized ferrite grains with sizes similar to those observed in industrial semi-processed strips subjected to long term batch annealing treatments. Within the temperature range investigated, the grain size increases and the 0.2% offset yield strength decreases with increasing temperature. It was observed that the rate of change of grain size with increasing temperature increases when annealing is performed at temperatures greater than Ac1 (~870 °C). This effect is attributed to Fe3C dissolution and rapid C segregation to austenite for annealing temperatures within the ferrite+austenite phase field. This leads to faster ferrite growth and formation of pearlite when the steel is finally cooled to room temperature. The presence of pearlite at room temperature decreases the ductility of samples annealed at T > Ac1.


2007 ◽  
Vol 26-28 ◽  
pp. 141-144
Author(s):  
Ippei Takeuchi ◽  
Kinji Hirai ◽  
Yorinobu Takigawa ◽  
Tokuteru Uesugi ◽  
Kenji Higashi

The effect of Ca and Sr content on the microstructure and mechanical properties of a cast AZ91 magnesium alloy is investigated. Ca and Sr additions in AZ91 magnesium alloy are expected high creep resistance. The microstructure of the alloy exhibits the dendritic α-matrix and the second-phases forming networks on the grain boundary. Tensile tests at elevated temperatures between 448 and 523K reveal that the creep resistance was improved with increasing the additional amount of Ca, especially more than 1.0wt%. From the perspective of grain refinement effect, it is expected that the additions of Ca and Sr to AZ91 magnesium alloy not only improve creep resistance but also improve mechanical properties at room temperature.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1693
Author(s):  
Robin Emmrich ◽  
Ulrich Krupp

The present study aims at the development of precipitation hardening fully ferritic steels with increased aluminum and niobium content for application at elevated temperatures. The first and second material batch were alloyed with tungsten or molybdenum, respectively. To analyze the influence of these elements on the thermally induced precipitation of the intermetallic Fe2Nb Laves phase and thus on the mechanical properties, aging treatments with varying temperature and holding time are performed followed by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) including elemental contrast based particle analysis as well as hardness measurements and tensile tests at room temperature and at 500 °C. The incorporation of molybdenum into the Laves phase sets in at an earlier stage of aging than the incorporation of tungsten, which leads to faster growth and coarsening of the Laves phase in the molybdenum-alloyed steel. Nevertheless, both concepts show a fast and massive increase in hardness (280 HV10) due to precipitation of Laves phase during aging at 650 °C. After 4 h aging, the yield strength increase at room temperature is 100 MPa, which stays stable at operation temperatures up to 500 °C.


2020 ◽  
Vol 993 ◽  
pp. 351-357
Author(s):  
Ming Yu Zhao ◽  
Xiao Yun Song ◽  
Wen Jing Zhang ◽  
Yu Wei Diao ◽  
Wen Jun Ye ◽  
...  

The Ti-6.5Al-2Sn-4Zr-1.5Mo-2Nb-0.25Fe-0.2Si (wt%) alloy is a novel two-phase high temperature alloy for short-term application. The effects of different heat treatments on the microstructure and mechanical properties were investigated through electron probe microanalysis (EPMA), optical microcopy (OM), scanning electron microscope (SEM), electron backscattered diffraction (EBSD) and tensile tests at room temperature and 650°C. Subjected to the annealing treatment at α+β region (1010 °C/2 h, FC to 990 °C+990 °C/2 h, AC), the microstructure was composed of bimodal structure, which consists of equiaxed primary α (αp) phase and lamellar transformed β (βt) structure. As a strong β stabilizer, the content of Fe in α phase is much less than that in β phase. Annealing at β region (1040 °C/2 h, AC) resulted in the formation of widmannstatten structure, consisting of coarse raw β grain and secondary α phase precipitated on the β grain. With respect to the tensile property, different heat-treated alloys obtained similar strength. However, widmannstatten structure was characterized by lower plasticity, with the elongation only half that of bimodal structure. The fracture characteristics at room temperature for the alloy with bimodal structure and widmannstatten structure are dominated by ductile fracture and cleavage fracture, respectively.


2006 ◽  
Vol 505-507 ◽  
pp. 781-786
Author(s):  
Yi Che Lee ◽  
Fuh Kuo Chen

The springback behavior of an invar sheet and its perforated form were examined in the present study. The mechanical properties for invar sheet and perforated invar-sheet at elevated temperatures were first obtained from tensile tests. The test results suggest that both invar sheet and perforated invar-sheet have favorable formability at temperature higher than 200oC. An analytical model was also established to predict the springback of the invar sheet and its perforated form under bending conditions at various elevated temperatures. In order to verify the predicted results, the V-bending tests were conducted for the invar sheet at various temperatures ranging from room temperature to 300. The experimental data indicate that the springback decreases with the rise in temperature for both invar sheet and perforated invar-sheet. The good agreement between the experimental data and the predicted values confirms the validity of the proposed theoretical model as well.


2014 ◽  
Vol 1035 ◽  
pp. 303-306
Author(s):  
Xiao Ya Chen ◽  
Quan An Li ◽  
Qing Zhang ◽  
Jun Chen ◽  
Hui Zhen Jiang

The microstructure and mechanical properties of Mg-6Al-1Zn-0.9Y-1.8Gd alloy have been studied by micro-analysis and tensile tests. The results showed that the alloy mainly consists of Mg matrix, Al2Y, Mg17Al12and Al2Gd. The best tensile strength of the alloy was 255 Mpa at room temperature, and the alloy still had the very high mechanical property at high temperature.


2015 ◽  
Vol 816 ◽  
pp. 381-386
Author(s):  
H. Yan ◽  
R.S. Chen ◽  
E.H. Han

Mg-2.0Zn-xGd sheets with non-basal texture were fabricated by common rolling process, which showed excellent ductility and formability at room temperature. In this paper, tensile tests were carried out at moderate temperature along the rolling direction and transverse direction to evaluate the influences of tensile temperature on mechanical properties and formability of the sheet. The microstructural evolution during tensile deformation was also investigated to analysis deformation mechanisms. The results showed that the elongation of the sheets increased from 57% at 373K to 253% at 573°C along the rolling direction, while the yield strength decreased with the increase of tensile temperature. The microstructure observation indicated that twining was one of the deformation modes and no dynamic recrytallization took place during deformation at 373K. With temperature increasing up to 473K, dynamic recrystallization took place and led to finer microstructure. This suggests that the formability of the Mg-Zn-Gd sheets with high ductility at room temperature could be further improved by increasing temperature up to 473K, which could refine the microstructure leading to higher strength during second forming process.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4339
Author(s):  
Guanqiang Wang ◽  
Mingsong Chen ◽  
Yongcheng Lin ◽  
Yumin Lou ◽  
Hongbin Li ◽  
...  

This study takes large size samples after hot-upsetting as research objects and aims to investigate the optimization double-stage annealing parameters for improving the mechanical properties of hot-upsetting samples. The double-stage annealing treatments and uniaxial tensile tests for hot-upsetting GH4169 superalloy were finished firstly. Then, the fracture mode was also studied. The results show that the strength of hot-upsetting GH4169 superalloy can be improved by the double-stage annealing treatment, but the effect of annealing parameters on the elongation of GH4169 alloy at high temperature and room temperature is not significant. The fracture mode of annealed samples at high-temperature and room-temperature tensile tests is a mixture of shear fracture and quasi-cleavage fracture while that of hot-upsetting sample is a shear fracture. The macroscopic expressions for the two fracture modes belong to ductile fracture. Moreover, it is also found that the improvement of strength by the double-stage annealing treatment is greater than the single-stage annealing treatment. This is because the homogeneity of grains plays an important role in the improvement of strength for GH4169 superalloy when the average grain size is similar. Based on a comprehensive consideration, the optimal annealing route is determined as 900 °C × 9–12 h(water cooling) + 980 °C × 60 min(water cooling).


Sign in / Sign up

Export Citation Format

Share Document