Defect Studies in n-Type GaN Grown by Molecular Beam Epitaxy
AbstractGaN thin films grown by molecular beam epitaxy (MBE) were characterized by Hall effect measurements in the temperature range from 80 K to 500 K and by photoluminescence spectroscopy (PL) at 2 K and at 300 K. These films were grown by MBE utilizing either electron cyclotron resonance (ECR) plasma activated nitrogen gas or thermally cracked hydrogen azide (HN3) as the source of chemically reactive nitrogen. The electrical properties of the GaN films grown by ECR plasma assisted MBE were found to vary with growth parameters, dominated either by shallow donors with activation energies (ΔE)in the range between 10 meV and 30 meV or deep donor levels (ΔE; > 500 meV). GaN grown by (HN3) gas-source MBE exhibited metallic conduction and electron mobilities <1 cm2/Vs. However, these films displayed sharp photoluminescence lines at 3.360 eV and 3.298 eV and no deep level related luminescence, whereas only broad deep level related emission was observed in the PL spectra of the ECR plasma assisted MBE grown GaN films.