Rapid Thermal Annealing of Tungsten Silicide Films

1995 ◽  
Vol 402 ◽  
Author(s):  
A. Fabricius ◽  
O. Nennewitz ◽  
L. Spieβ ◽  
V. Cimalla ◽  
J. Pezoldt

AbstractTungsten / silicon multisandwich layers were deposited by DC magnetron sputtering on silicon and silicon oxide substrates. After the deposition the samples were annealed by rapid thermal annealing at different temperatures under H2 atmosphere. X-ray diffraction measurements were carried out to determine the crystal structure of the obtained silicide layers. To estimate the grain size and the relative lattice strain in dependence on the annealing temperature from the X-ray profile the deconvolution method of Lagrange was used. To characterize the electrical properties the specific resistance was measured by a linear four-point method. The best specific resistance measured was approximately 17 μΩcm for the sample on silicon substrate annealed at 1195 °C for 20 seconds. Rutherford Backscattering Spectroscopy measurements were carried out to obtain the stoichiometric depth profile.

1991 ◽  
Vol 69 (3-4) ◽  
pp. 451-455 ◽  
Author(s):  
H. Lafontaine ◽  
J. F. Currie ◽  
S. Boily ◽  
M. Chaker ◽  
H. Pépin

Tungsten thin films are deposited with a triode sputtering system in order to obtain an absorbing layer for X-ray masks. The mechanical stress is studied as a function of different pressure and RF power conditions during deposition. Rapid thermal annealing at different temperatures and durations is performed in order to produce films under low compressive stress. We observe that the stress changes occur over the time scale of seconds at the annealing temperature and that the corresponding activation energies are low (60 meV). Grain growth in a preferred orientation explains the observed changes in stress. The magnitude in the change of stress is in good agreement with a model proposed by Hoffman et al. relating the stress to grain size and grain boundary dimensions. [Journal translation]


1988 ◽  
Vol 144 ◽  
Author(s):  
R. C. Bowman ◽  
P. M. Adams ◽  
M. H. Herman ◽  
S. E. Buttrill

ABSTRACTRaman scattering, double-crystal x-ray diffraction, and electron beam electroreflectance have been used to assess the damage produced in undoped (100)-GaAs by boron ion implants and the influence of post-implant anneals. Both conventional furnace and rapid thermal annealing treatments were found to remove much of the lattice strain created by the implants. However, considerable disorder also remains after these anneals.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
C. R. García ◽  
L. A. Diaz-Torres ◽  
J. Oliva ◽  
M. T. Romero ◽  
P. Salas

Blue phosphorescent strontium aluminosilicate powders were prepared by combustion synthesis route and a postannealing treatments at different temperatures. X-ray diffraction analysis showed that phosphors are composed of two main hexagonal phases: SrAl2O4and Sr3Al32O51. The morphology of the phosphors changed from micrograins (1000°C) to a mixture of bars and hexagons (1200°C) and finally to only hexagons (1300°C) as the annealing temperature is increased. Photoluminescence spectra showed a strong blue-green phosphorescent emission centered atλem=455 nm, which is associated with4f65d1→4f6  (8S7/2)transition of the Eu2+. The sample annealed at 1200°C presents the highest luminance value (40 Cd/m2) with CIE coordinates (0.1589, 0.1972). Also, the photocatalytic degradation of methylene blue (MB) under UV light (at 365 nm) was monitored. Samples annealed at 1000°C and 1300°C presented the highest percentage of degradation (32% and 38.5%, resp.) after 360 min. In the case of photocatalytic activity under solar irradiation, the samples annealed at 1000°C, 1150°C, and 1200°C produced total degradation of MB after only 300 min. Hence, the results obtained with solar photocatalysis suggest that our powders could be useful for water cleaning in water treatment plants.


2013 ◽  
Vol 40 (1) ◽  
pp. 0106003
Author(s):  
王健 Wang Jian ◽  
谢自力 Xie Zili ◽  
张韵 Zhang Yun ◽  
滕龙 Teng Long ◽  
李烨操 Li Yecao ◽  
...  

e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Guido Scavia ◽  
William Porzio ◽  
Silvia Destri ◽  
Alberto Giacometti Schieroni ◽  
Fabio Bertini

AbstractThe morphology and structure of the overlying poly(3-hexylthiophene) (P3HT) layer onto differently silanized silicon oxide has been studied by Atomic Force Microscopy (AFM) and X-Ray Diffraction (XRD) techniques. By increasing the silanizer alkyl chain length, the layer morphology evolves from a filament like to globular needle like as a consequence of the different SAM organization, while the P3HT conformation remains edge-on. For each case the effect of the annealing temperature has been studied. For all the cases a particular attention has been paid to the first thin layers close to the interface P3HT/SiOx. The effect of a polar substituent and presence of aromatic ring has been also studied.


1983 ◽  
Vol 23 ◽  
Author(s):  
D.L. Kwong ◽  
R. Kwor ◽  
B.Y. Tsaur ◽  
K. Daneshvar

ABSTRACTThe formation of composite TaSi2/n+ Poly-Si silicide films through the use of rapid thermal annealing (RTA) is investigated by x-ray diffraction, four point probe, scanning Auger microprobes (SAM) with ion sputter etching, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and capacitance-voltage (C-V) measurements. 0.2 μm polysilicon is deposited on oxidized Si wafer by LPCVD and doped with phosphorus. A layer of 2200 A TaSix is then co-sputtered on polysilicon samples from separate targets. These as-deposited films are then annealed by RTA in an argon ambient for 1 sec. and 10 sec. at various temperatures. X-ray diffraction and SAM results show the rapid formation of a uniform stoichiometric tantalum disilicide via Si migration from polysilicon. TEM micrographs show simlilar results for samples annealed at 1000°C in furnace for 30 min. or by RTA for 1 sec., exhibiting average grain size greater than 1000 A. Sheet resistance of samples annealed by furnace annealing and RTA are comparable. SEM micrographs indicate that the surface morphology of the RTA-annealed sample is superior to that obtained by furnace annealing. These results show that RTA may offer a practical solution to low-resistivity silicide formation in VLSI circuits.


1996 ◽  
Vol 441 ◽  
Author(s):  
Wen-Jie Qi ◽  
Zhi-Sheng Wang ◽  
Zhi-Guang Gu ◽  
Guo-Ping Ru ◽  
Guo-Bao Jialig ◽  
...  

AbstractThe ion-beam-sputtered polycrystalline SiGe film and its doping properties have been studied. Boron and phosphorus have been doped into the sputtered poly-SiGe film by ion implantation and diffusion. To activate the implanted impurities, both rapid thermal annealing and fiirnace annealing have been used. The electrical measurements show that boron and plhosphorus can be doped into sputtered SiGe films and effectively activated by both ion implantation with post-annealing and diffiision. Hall mobilities as high as 31 cm2/V-s and 20 cm2/V.s have been obtained in B-difflhsed and P-diffused SiGe films, respectively. The x-ray diffraction spectra of the sputtered Sifie filhn show its typical polycrystalline structure with (111), (220) and (311) as the preferential orientations.


2007 ◽  
Vol 7 (2) ◽  
pp. 700-703 ◽  
Author(s):  
C. X. Shan ◽  
Z. Liu ◽  
C. C. Wong ◽  
S. K. Hark

Doped ZnO nanowires were prepared in a very simple and inexpensive thermal annealing method using ZnSe nanowires as a precursor. As doped, P doped, and As/P codoped ZnO nanowires were obtained in this method. X-ray diffraction shows that the zincblende ZnSe nanowires were converted to doped wurtzite ZnO nanowires. The incorporation of the dopants was confirmed by energy dispersive X-ray spectroscopy. The doping concentration could be adjusted by changing the annealing temperature and duration. Scanning electron microscopy indicated that the morphology of the ZnSe nanowires was essentially retained after the annealing and doping process. Photoluminescence spectroscopy also verified the incorporation of the dopants into the nanowires.


2021 ◽  
Author(s):  
Kamal Kayed ◽  
Dalal Baba Kurd

Abstract In this article, silicon wafers were thermal treated in air at temperatures from 800 to 1200 °C. The annealed samples were investigated using X-ray diffraction, FTIR and optical reflection spectroscopy. Unique result obtained includes that, that Kubelk-Munk curves could be utilized to estimate the ratio of oxidized silicon atoms. In addition, we found that these curves could provide information on the degree to which the nanoparticle formation affects both the reflection spectra and the energy gap of the Si/SiO2 composites. On the other hand, it has been found that, the intensity of the silicon peak in XRD spectra is proportional to the relative absorption coefficient of amorphous silicon oxide.


2019 ◽  
Vol 27 (2) ◽  
pp. 228-237 ◽  
Author(s):  
Rashed T. Rasheed ◽  
Sariya D. Al-Algawi ◽  
Rosul M. N.

Manganese dioxide (MnO2) nanopowder has been synthesized by hydrothermal method. MnO2 was annealed at different temperatures (250, 400, 550, 700˚C). The crystal structure and surface morphology of these nanostructures were characterized by X-ray diffraction (XRD), Atomic Force Microscope (AFM) and Scanning Electron Microscopy (SEM). The catalase mimic activity (catalytic activity) of MnO2 against hydrogen peroxide (H2O2) was studied by using the new method and found that 400˚C is the best annealing temperature.


Sign in / Sign up

Export Citation Format

Share Document